• Title/Summary/Keyword: 고로슬래그 잔골재

Search Result 65, Processing Time 0.03 seconds

Improvement of Blast Furnace Slag Mortar Using the Recycled Fine Aggregates Depending on Improvement Material Type and Replacement Ratio (품질향상재 종류 및 치환율 변화에 따른 순환잔골재 사용 고로슬래그 모르타르의 품질향상)

  • Han, Cheon-Goo;Kim, Dae-Gun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.1
    • /
    • pp.76-83
    • /
    • 2012
  • In this study, the research examined the effect on FC, WG, RP replacement ratio on the quality improvement of BS mortar using the RA. First of all, the flow value increased as the FC contents increased, and decreased as the WG and RP contents increased. The air contents was reduced as the FC and RP contents increased, but was increased as the WG contents went up While the compressive strength of 1 : 7 mix proportion increased with the increase of the FC and WG contents, it decreased as there was more RP contents. The compressive strength of RP could increase as the mix proportion increased, but the difference depending on the improvement material type and replacement ratio decreased gradually. The absorption deteriorated as the FC and RP contents increased in all the mix proportions, but improved a little when WG was used. Meanwhile, the absorption decreased as the compressive strength improved in all the mix proportions as a correlation, but the order was FC, RP and WG depending on the quality improvement material types. The FC and WG were most favorable in terms of quality improvement as a total analysis, and the RP and WG was most effective in terms of economical efficiency and resource recycling.

  • PDF

Status of Ready-Mixed Concrete Plants and Raw Materials in Pusan (부산지역 레미콘 플랜트 및 원재료 현황)

  • Yoo, Seung-Yeup;Koo, Ja-Sul;Lee, Yang-Soo;Moon, Hyung-Jae;Kim, Jung-Jin;Park, Soon-Jeon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.641-644
    • /
    • 2008
  • This paper investigated the plant and raw material of the ready-mixed concrete company which could supply to the second Lotte World on Pusan. the results were summarized as following. Almost plants were mainly using Twin shaft mixer which was 210m$^3$/hr and horizontal type. There was different the number of admixture silos at each plants, and they were separated by types. The mixtures mainly consisted of the ordinary portland cement, fly ash and blast furnace slag. For favorable quality control, each materials had to carry from same factories, and the monitering standard for quality control should be prepared. The coarse aggregates were used with many different producing districts, so they were only used from Y caused by exclusion of quality difference. The crushed, washed and river sands were generally used as fine aggregates, so the fine aggregates which could be possible to supply stable quality were chosen. This study used Poly Carbonic Acid Admixture which was developed to satisfy maintenance of performance till 2 hours and 10MPa at 15 hours.

  • PDF

Experimental Study on Properties of Permeable Polymer Concrete with Blast Furnace Slag and Fly Ash (고로 슬래그와 플라이 애시를 혼입(混入)한 투수성(透水性) 폴리머 콘크리트의 특성(特性)에 관(關)한 실험적(實驗的) 연구(硏究))

  • Sung, Chan Yong;Kim, In Su;Jo, Il Ho;Youn, Joon No;Kim, Young Ik;Seo, Dae Seuk
    • Korean Journal of Agricultural Science
    • /
    • v.26 no.2
    • /
    • pp.49-55
    • /
    • 1999
  • This study is performed to evaluate the properties of permeable polymer concrete with blast furnace slag and fly ash. The following conclusions are drawn: 1. The highest strength is achieved by 50% filled blast furnace slag powder and fly ash permeable polymer concrete, it is increased 36% by compressive strength and 217% by bending strength than that of the normal cement concrete, respectively. 2. The static modulus of elasticity is in the range of $100{\times}10^3{\sim}130{\times}10^3kgf/cm^2$, which is approximately 43~51% of that of the normal cement concrete. 3. The dynamic modulus of elasticity is in the range of $102{\times}10^3{\sim}130{\times}10^3kgf/cm^2$, which is approximately less compared to that of the normal cement concrete. The highest dynamic modulus is showed by 50% filled blast furnace slag powder and fly ash permeable polymer concrete. The dynamic modulus of elasticity are increased approximately 0~4% than that of the static modulus. 4. The water permeability is in the range of $4.612{\sim}5.913l/cm^2/h$, and it is largely dependent upon the mix design.

  • PDF

A Study on the Physical Properties of Recycled Fine Aggregate (by Dry and Wet Type Production formula) Mortar Using Blast Furnace Slag (고로슬래그를 사용한 건식 및 습식 재생 잔골재 모르타르의 물리적 특성에 관한 연구)

  • Shim, Jong-Woo;Lee, Sea-Hyun;Seo, Chi-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.501-504
    • /
    • 2006
  • Recycled aggregate mortar contains plenty of calcium hydroxide to improve the strength of blast furnace slag, although the surface mortar made of recycled aggregate deteriorates adhesion to cement paste and blast furnace slag has a low initial strength. Therefore, this study assumes that the combination with both recycled aggregate and blast furnace slag will produce a better performance. The results of the experiment show that dry mortar made of recycled aggregate provides with higher strength than wet mortar does at the 3-day and 7-day age, while lower at the 28-day age. It indicates that a large amount of cement mortar made of dry recycled aggregate has deteriorated adhesion strength. The mixes with 30% and 50% of blast furnace slag and 50% and 75% of recycled aggregate provide with much better strength at the 7-day age, although they usually have latent hydraulic property at the 28-day age. It indicates that calcium hydroxide($Ca(OH){_2}$) in recycled aggregate has affected ground granulated blast furnace slag.

  • PDF

The Strength Properties Activated Granulated Ground Blast Furnace Slag with Aluminum Potassium Sulfate and Sodium Hydroxide (칼륨명반과 수산화나트륨으로 활성화된 고로슬래그 미분말의 강도 특성)

  • Kim, Taw-Wan;Hahm, Hyung-Gil
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.2
    • /
    • pp.95-102
    • /
    • 2015
  • In this paper, the effects of sodium hydroxide (NaOH) and aluminum potassium sulfate ($AlK(SO_4)_2{\cdot}12H_2O$) dosage on strength properties were investigated. For evaluating the property related to the dosage of alkali activator, sodium hydroxide (NaOH) of 4% (N1 series) and 8% (N2 series) was added to 1~5% (K1~K5) dosage of aluminum potassium sulfate ($AlK(SO_4)_2{\cdot}12H_2O$) and 1% (C1) and 2% (C2) dosage of calcium oxide (CaO). W/B ratio was 0.5 and binder/ fine aggregate ratio was 0.5, respectively. Test result clearly showed that the compressive strength development of alkali-activated slag cement (AASC) mortars were significantly dependent on the dosage of NaOH and $AlK(SO_4)_2{\cdot}12H_2O$. The result of XRD analysis indicated that the main hydration product of $NaOH+AlK (SO_4)_2{\cdot}12H_2O$ activated slag was ettringite and CSH. But at early ages, ettringite and sulfate coated the surface of unhydrated slag grains and inhibited the hydration reaction of slag in high dosage of $NaOH+AlK(SO_4)_2{\cdot}12H_2O$. The $SO_4{^{-2}}$ ions from $AlK(SO_4)_2{\cdot}12H_2O$ reacts with CaO in blast furnace slag or added CaO to form gypsum ($CaSO_4{\cdot}2H_2O$), which reacts with CaO and $Al_2O_3$ to from ettringite in $NaOH+AlK(SO_4)_2{\cdot}12H_2O$ activated slag cement system. Therefore, blast furnace slag can be activated by $NaOH+AlK(SO_4)_2{\cdot}12H_2O$.

A Study on the Quality of the Water Coold Blast Furnace Slag Fine Aggregate (고로수쇄 슬래그 잔골재의 품질에 대한 고찰)

  • 문한영;최연왕;김기형
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1990.04a
    • /
    • pp.24-28
    • /
    • 1990
  • The purpose of this study is to examine through the experimental study whether the water cooled unprocessed blast furnace slag produced in the country is useful for the fine aggregate of concrete or not. The results of this study show that the quality of the water cooled blast furnace slag is inferior to that of natural river sand and that the concrete made by substituting the water cooled blast furnace slag for fine aggregate have a tendency to decrease to some extent in strength. But if the water cooled blast furnace slag is transformed into more hardened state material, to use it as the fine aggregate of concrete will be possible.

  • PDF

A Study on the property of the Blast-Furnace Slag as Fine Aggregate of Concrete (콘크리트용 잔골재로써 고로 수쇄슬래그의 특성연구)

  • Kim, D.S.;Ha, S.W.;Koo, B.C.;Ha, J.D.;Lee, J.R.;Chae, J.H.
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.269-274
    • /
    • 2000
  • As a result of the reduction of natural aggregate, most of developed country have been studied the utilization of Blast-furnace Slag(BFS) as aggregate of concrete. bur, in korea there are only basic study about these even though other country are using Blast-furnace Slag production of Ready Mixed Concrete. According, in this study, we carried out fundamental experiments in order to know the material properties of BFS and possibilities of the BFS as fine aggregate of concrete. It is included that analysis concerning material properties of BFS as like specific gravity, absorption. unit weigth, grading including investigation of the surface shape by SEM, also, analysis concerning properties of concrete with BFS as like air-content surface slump. compressive strength .etc.

  • PDF

Characteristics of Foam Concrete with Application of Mineral Admixture (무기혼화재 적용에 따른 기포콘크리트의 특성)

  • Kim, Sang-Chel;Kim, Yun-Tae
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.2
    • /
    • pp.97-106
    • /
    • 2009
  • self-loading, various problems related to construction can be solved as well as the save of construction cost. Thus, this study has an aim of applying foam concrete to structural purpose by adding bottom ash as a reinforcing material like fine aggregate, in contrast to conventional non-structural usage such as soundproofing or insulating materials. In addition, it was evaluated in terms of unit volume weight, flow value, air void, water absorption and dosage of foam agent wether replacement of cement by granulated blast furnace slag or fly-ash has an effect on the material characteristics of foam concrete. As results of experiments, it can be found that the increase of fine aggregate ratio, that is to say, the increase of bottom ash results in the increase of unit volume weight, while decreasing air void and flow value. But, appropriate addition of bottom ash to foam concrete makes it easy to control a homogeneous and uniform quality in foam concrete due to less sensitive to bubbles. As the replacement ratio of mineral admixtures such as granulated blast furnace slag and fly-ash increases, as unit volume weight tends to decrease. In the meanwhile, serious effects were shown on fluidity of foam concrete when more than limit of replacement ratio was applied.

  • PDF

Watertightness and Durability Properties of Ultra Rapid Hardening Grout using Bottom-ash (잔골재 대체재로서 바텀애쉬를 이용한 초속경 그라우트재의 수밀성 및 내구특성)

  • Lee, Gun-Cheol;Oh, Dong-Uk;Cho, Byoung-Young;Kim, Young-Geun;Cho, Chung-Ki
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.3
    • /
    • pp.102-109
    • /
    • 2011
  • In this study, in order to develop ultra rapid hardening mortar(URHM) for tunnel repairs using bottom ash of low recycle ratio and Admixture as Eco concept, watertightness and durability properties of URHM on temperature condition of construction field were performed. Test result, seepage quantity and water absorption coefficient regarding watertightness of URHM were as in the following : series II > series I. Seepage quantity for the standard condition were smaller than low temperatures. all specimens were satisfied below 20g as standards of seepage quantity on KS F 4042. Because of the decrease of unit cement content by to replacement of blast furnace slag, the neutrlization resistance for durability properties was reduced. The result of alkali resistance and acide resistance, compressive strengths for specimens soaked in calcium hydroxide solution of seriesI were lower than compressive strengths for specimens not soaked. On the other hand, the case of series II show that the deterioration of compressive strengths for specimens was not almost showed. Compressive strengths of specimens soaked were similar with specimens not soaked except series II-C in $5^{\circ}C$. Therefore, specimens using both blast furnace slag and bottom ash were good in alkali resistance and acide resistance.

  • PDF

A Study on the Fundamental Properties of Ultra Rapid Hardening Mortar using Coal-Ash (잔골재 대체재로서 석탄회를 이용한 초속경 보수모르타르의 기초적 특성에 관한 연구)

  • Lee, Gun-Cheol;Oh, Dong-Uk;Kim, Young-Geun;Cho, Chung-Ki
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.1
    • /
    • pp.128-135
    • /
    • 2011
  • In this study, in order to develop ultra rapid hardening mortar(URHM) for tunnel repairs using bottom ash of low recycle ratio and Admixture as Eco concept, fundamental properties of URHM on temperature condition of construction field were performed. Test result, URHM of three types for fluidity and setting time were as in the following : B > C > A. Those for low temperatures were later than the standard condition. Compressive, bending and bond strength were similar with three types as follow. In compressive strength, initial strength of the low were smaller than the standard but the low in the long-term were similar with the standard. On the contrary to this, bending strength were similar in initial strength but the low in the long-term were smaller than the standard. The low in bond strength was average 35% less than the standard. Length changes was as in the following : A > C > B. the low is two times much as the standard but the case using blast furnace slag particles noticeably reduced length changes. Water absorption coefficient and water vapor resistance were as in the following : C > A > B. In case of URHM added bottom ash, water absorption coefficient and water vapor resistance were increased because bottom ash is porous material.

  • PDF