• Title/Summary/Keyword: 고도측량

Search Result 209, Processing Time 0.035 seconds

The Measurement of Coastal Sand Dune's Height using Digital Photogrammetry (디지털 사진측량에 의한 해안사구의 고도값 측정)

  • 김민호;유근배;조봉환
    • Spatial Information Research
    • /
    • v.10 no.2
    • /
    • pp.317-329
    • /
    • 2002
  • Coastal landforms such as sand beach and coastal sand dune are changing dynamically, and the research about them is being conducted. Conventionally the leveling method has been applied to measuring heights of dynamic morphological surface in coastal landforms. We applied the photograrmmetric method which was not considered to measure the heights on coastal sand dune’s profile to calculating the heights of coastal sand dune; that is, the heights of unknown points on coastal sand dune’s profile was reckoned from the digital photographs’stereo pairs through bundle adjustment and backward transform of collinearity condition equation. we used six GCPs to perform bundle adjustment. After backward transform the error of heights between surveyed value and computed value was estimated around 10cm. In general, the pole is not adamantly fixed on the surface of coastal sand dune because of its softness, and then the disturbance of coastal sand dune adjoining surveyed area can be made in small area. Digital photogrammetry can solve the problem which conventional leveling method has, and be replaced it.

  • PDF

Extraction of Building Height Using Digital Map and Single Imagery (수치지도와 단영상을 이용한 건물의 고도값 추출)

  • Yun Kong-Hyun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.24 no.1
    • /
    • pp.57-64
    • /
    • 2006
  • Recently the extraction of building height information has been investigated using remotely sensed image and digital maps. In this study, based on the digital photogrammetry principle and mono imagery method the building height information can be extracted by using relationship between ground coordinates and image coordinates. To evaluate the result the comparison was done with building height from 1:5000 aerial photo. The experiment shows that extraction of building height could be performed using IKONOS single imagery and digital map and it is proved that the building height could be reconstructed within some extent.

Accuracy Assessment of Parcel Boundary Surveying with a Fixed-wing UAV versus Rotary-wing UAV (고정익 UAV와 회전익 UAV에 의한 농경지 필지경계 측량의 정확도 평가)

  • Sung, Sang Min;Lee, Jae One
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.35 no.6
    • /
    • pp.535-544
    • /
    • 2017
  • UAVs (Unmanned Aerial Vehicle) are generally classified into fixed-wing and rotary-wing type, and both have very different flight characteristics each other during photographing. These can greatly effect on the quality of images and their productions. In this paper, the change of the camera rotation angle at the moment of photographing was compared and analyzed by calculating orientation angles of each image taken by both types of payload. Study materials were acquired at an altitude of 130m and 260m with fixed-wing, and at an altitude of 130m with rotary-wing UAV over an agricultural land. In addition, an accuracy comparison of boundary surveying methods between UAV photogrammetry and terrestrial cadastral surveying was conducted in two parcels of the study area. The study results are summarized as follows. The differences at rotation angles of images acquired with between two types of UAVs at the same flight height of 130m were significantly very large. On the other hand, the distance errors of parcel boundary surveying were not significant between them, but almost the same, about within ${\pm}0.075m$ in RMSE (Root Mean Square Error). The accuracy of boundary surveying with a fixed-wing UAV at 260m altitude was quite variable, $0.099{\sim}0.136m$ in RMSE. In addition, the error of area extracted from UAV-orthoimages was less than 0.2% compared with the results of the cadastral survey in the same two parcels used for the boundary surveying, In conclusion, UAV photogrammetry can be highly utilized in the field of cadastral surveying.

Geocoding of Low Altitude UAV Imagery using Affine Transformation Model (부등각사상변환을 이용한 저고도 UAV 영상의 지형보정)

  • Kim, Seong-Sam;Jung, Jae-Hoon;Kim, Eui-Myoung;Yoo, Hwan-Hee;Sohn, Hong-Gyoo
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.16 no.4
    • /
    • pp.79-87
    • /
    • 2008
  • There has been a strong demand for low altitude UAV development in rapid mapping not only to acquire high resolution image with much more low cost and weather independent, compared to satellite surveying or traditional aerial surveying, but also to meet many needs of the aerial photogrammetry. Especially, efficient geocoding of UAV imagery is the key issue. Contrary to high UAV potential for civilian applications, the technology development in photogrammetry for example direct georeferencing is in the early stage and it requires further research and additional technical development. In this study, two approaches are supposed for automatic geocoding of UAV still images by simple affine transformation and block adjustment of affine transformation using minimal ground control points and also evaluated the applicability and quality of geometric model compared to geocoded images generated by commercial S/W.

  • PDF

A Study on the Optimal Shooting Conditions of UAV for 3D Production and Orthophoto Generation (3D 제작과 정사영상 생성을 위한 UAV 최적 촬영 조건 연구)

  • Cho, Jungmin;Lee, Jongseok;Lee, Byoungkil
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.6
    • /
    • pp.645-653
    • /
    • 2020
  • Recently studies on how to use the UAV (Unmanned Aerial Vehicle) are actively being conducted, and the National Geographic Information Institute published the 『Work Guidelines for Public Surveying of Unmanned Aerial Vehicles』. However, the guidelines do not provide the optimum shooting conditions required for each application. In this study, we tried to find the suitable shooting conditions for the production of 3D (Three-dimensional) spatial information and orthophoto. To this end, 45 experiments were conducted by various altitudes, overlaps, and camera angles within an above ground level of 150m. For evaluating the 3D modeling by shooting conditions, point densities of 9 verification areas were analyzed, and to evaluate the orthophotos, 1/1,000 digital maps were compared. Considering the quality of the output and the processing time for precise 3D construction, an altitude of 50m, an overlap of 70~80%, and a camera angle of 80~90° are suitable as shooting conditions, and an altitude of 100m and camera angle of 80~90° are suitable for orthophoto generation.

Accuracy Analysis of Cadastral Control Point and Parcel Boundary Point by Flight Altitude Using UAV (UAV를 활용한 비행고도별 지적기준점 및 필지경계점 정확도 분석)

  • Kim, Jung Hoon;Kim, Jun Hyun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.36 no.4
    • /
    • pp.223-233
    • /
    • 2018
  • In this study was classified the cadastral control points and parcel boundary points into 40m, 100m by flight altitude of UAV (Unmanned Aerial Vehicle) which compared the coordinates extracted from the orthophoto with the parcel boundary point coordinates by GNSS (Global Navigation Satellite System) ground survey. As a results of this study, first, in the spatial resolution analysis that the average error of the orthoimage by flight altitude were 0.024m at 40m, and 0.034m at 100m which were higher 40m than 100m for spatial resolution of orthophotos and position accuracy. Second, in order to analyze the accuracy of image recognition by airmark of flight altitude that was divided into three cases of nothing, green, and red of RMSE (Root Mean Square Error) were X=0.039m, Y=0.019m and Z=0.055m, the highest accuracy. Third, the result of the comparison between orthophotos and field survey results that showed the total RMSE error of the cadastral control points were X=0.029m, Y=0.028m, H=0.051m, and the parcel boundary points were X=0.041m, Y=0.030m. In conclusion, based on the results of this study, it is expected that if the average error of flight altitude is limited to less than 0.05m in the legal regulations related to orthophotos for cadastral surveying, it will be an economical and efficient method for cadastral survey as well as spatial information acquisition.

A Study on Survey Procedures and Method Applications for Advancing the Railroad Design-Based Data (철도설계 기반데이터의 고도화를 위한 측량절차 및 방법적용에 관한 연구)

  • Moon, Jae-Woo;Lee, Tae-Gyun;Ko, Dae-Hyeob;Han, Chun-Deuk
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.343-352
    • /
    • 2011
  • For optimizing railroad designs, setting up shape and specifications of facilities harmonized and coincide with local topography based on absolute location information, correct construction quantity's output and proper land's security etc are key matters, and also clear and advanced surveying standards and technical provision shall become priority so as to satisfy them. Therefore, this study analyzed and researched on surveying standards and technical provision's status in current railroad design's cases, and then attempts to suggest establishment of design surveying standard, procedures, and methods together with its practical scheme.

  • PDF

A Simulation of City Viewscape Using Digital Photogrammetry and GIS (수치사진측량 및 GIS에 의한 도시경관 시뮬레이션)

  • 최병길
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.20 no.3
    • /
    • pp.323-329
    • /
    • 2002
  • This paper aims at three dimensional simulation and quantitative analysis fer city height planning using digital photogrammetry and GIS. Land view has been neglected while the cities in Korea have been developed rapidly and quantitatively It is, however recognized that Land viewscape is an important factor to achieve a high quality of life. Land viewing is shape and subjective, which makes quantitative and objective analysis of urban viewscape not easy. In this study, a spatial database was constructed by aerial color photographing and digital photogrammetry. The analysis of photographic image were performed using 3-D simulation. Numerical and quantitative analysis for the height planning of building was carried out by producing the vertical profiles of existing buildings and terrain at sight lines. As the result of this study, it was found that the hight planning in a city could be made quantitatively and objectively using 3-D viewscape analysis.

Accuracy Assessment of DTM by Airborne Laser Mapping System (항공 레이저 매핑 시스템에 의한 DTM 생성의 정확도 분석)

  • 김영배;서정헌;임삼성
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.20 no.2
    • /
    • pp.105-110
    • /
    • 2002
  • For the accuracy assessment of DTM obtained by Airborne Laser Mapping Systems (ALMS), we selected 500 m spaced test points and analyze the accuracy of the DTM by various methods including GPS survey. To estimate the height at the point in between the test points of the DTM we produced a TIN, and to analyze the accuracy we use a GPS coverage map overlaid with the TIN. Compared with the existing method, DTM by ALMS is shown to be relatively accurate, and therefore, ALMS is applicable to 1/5000 digital terrain mapping.

The Altimeter Geoid of the Region of Korean peninsula

  • Yun, Hong-Sic
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.13 no.1
    • /
    • pp.61-68
    • /
    • 1995
  • This paper is to provide a reference surface geoid for geodetic applications of satellite altimeter data. The paticular satellite alone or the combination with other altimeter data could be used for the recovery of geoid un-dulations and gravity anomalies in the ocean areas. This paper also describes the geoidal undulation in the ocean area of Korean Peninusla using Geosat, ERS-1 and Topex/Poseidon data. The results show that the quasi-stationary sea surface topography (557) is estimated to be less than 10 cm RMS value in the ocean area of Korean Peninsula. This can be considered as an altimeter geoid.

  • PDF