• Title/Summary/Keyword: 고객 빅데이터

Search Result 192, Processing Time 0.028 seconds

Extracting User-Specific Advertising Keywords Based on Textual Data Mining from KakaoTalk (카카오톡에서의 텍스트 데이터 마이닝 기반의 사용자별 적합 광고 키워드 도출 )

  • Yerim Jeon;Dayeong So;Jimin Lee;Eunjin (Jinny) Jo;Jihoon Moon
    • Annual Conference of KIPS
    • /
    • 2023.05a
    • /
    • pp.368-369
    • /
    • 2023
  • 대화 데이터 기반 광고 추천은 광고 마케팅에서 고객 맞춤형 광고 제공, 마케팅 효과 극대화 등을 위한 중요한 기술로 주목받고 있다. 본 논문에서는 모바일 인스턴스 메신저인 카카오톡 대화창에서 발생한 텍스트 데이터를 기반으로 대화 내용을 분석하여 대화 주제별 적절한 광고 키워드를 제안한다. 이를 위해 주제별 대화 내용을 미용, 식음료, 상거래로 세분하고 KoNLPy 의 Okt 를 이용하여 텍스트 전처리를 수행하고 키워드별로 빈도수를 뽑아 워드 클라우드를 제시한다. 또한, 잠재 디리클레 할당(Latent Dirichlet Allocation, LDA)을 기반으로 대화 주제를 세분화한 뒤 라벨링을 통해 주제별 대화 키워드를 분석한다. 실험 결과, 대화 주제를 온라인 쇼핑, 헤어, 뷰티 관리, 음식으로 나눌 수 있었으며, 토픽별 상위 키워드를 Word2Vec 을 통해 특정 단어와 유사한 키워드를 도출하여 적절한 광고 키워드를 제시할 수 있었다.

Consumer Trend Platform Development for Combination Analysis of Structured and Unstructured Big Data (정형 비정형 빅데이터의 융합분석을 위한 소비 트랜드 플랫폼 개발)

  • Kim, Sunghyun;Chang, Sokho;Lee, Sangwon
    • Journal of Digital Convergence
    • /
    • v.15 no.6
    • /
    • pp.133-143
    • /
    • 2017
  • Data is the most important asset in the financial sector. On average, 71 percent of financial institutions generate competitive advantage over data analysis. In particular, in the card industry, the card transaction data is widely used in the development of merchant information, economic fluctuations, and information services by analyzing patterns of consumer behavior and preference trends of all customers. However, creation of new value through fusion of data is insufficient. This study introduces the analysis and forecasting of consumption trends of credit card companies which convergently analyzed the social data and the sales data of the company's own. BC Card developed an algorithm for linking card and social data with trend profiling, and developed a visualization system for analysis contents. In order to verify the performance, BC card analyzed the trends related to 'Six Pocket' and conducted th pilot marketing campaign. As a result, they increased marketing multiplier by 40~100%. This study has implications for creating a methodology and case for analyzing the convergence of structured and unstructured data analysis that have been done separately in the past. This will provide useful implications for future trends not only in card industry but also in other industries.

Implementation of smart chungbuk tourism based on SNS data analysis (SNS 데이터 분석을 통한 스마트 충북관광 구축)

  • Cho, Wan-Sup;Cho, Ah;Kwon, Kaaen;Yoo, Kwan-Hee
    • Journal of the Korean Data and Information Science Society
    • /
    • v.26 no.2
    • /
    • pp.409-418
    • /
    • 2015
  • With the development of mobile devices and Internet, information exchange has actively been made through SNS and Blogs. Blogs are widely used as a space where people share their experience after their visit to tourist attractions. We propose a method of recommending associated tourist attractions based on tourists' opinions using issue analysis, association analysis, and sentimental analysis for various online reviews including news in order to help to develop tour products and policies. The result shows that north area of Chungbuk province has been selected as issue attractions, and associated attractions/keywards have been identified for given well-known attraction. Positive/negative opinion for review texts has been analyzed and user can grasp the reason for the sentiments. Multidimensional analysis technique has been integrated to derive additional sophisticated insights and various policy proposal for smart tourism.

Comparative Analysis for Clustering Based Optimal Vehicle Routes Planning (클러스터링 기반의 최적 차량 운행 계획 수립을 위한 비교연구)

  • Kim, Jae-Won;Shin, KwangSup
    • The Journal of Bigdata
    • /
    • v.5 no.1
    • /
    • pp.155-180
    • /
    • 2020
  • It takes the most important role the problem of assigining vehicles and desigining optimal routes for each vehicle in order to enhance the logistics service level. While solving the problem, various cost factors such as number of vehicles, the capacity of vehicles, total travelling distance, should be considered at the same time. Although most of logistics service providers introduced the Transportation Management System (TMS), the system has the limitation which can not consider the practical constraints. In order to make the solution of TMS applicable, it is required experts revised the solution of TMS based on their own experience and intuition. In this research, different from previous research which have focused on minimizing the total cost, it has been proposed the methodology which can enhance the efficiency and fairness of asset utilization, simultaneously. First of all, it has been adopted the Cluster-First Route-Second (CFRS) approach. Based on the location of customers, we have grouped customers as clusters by using four different clustering algorithm such as K-Means, K-Medoids, DBSCAN, Model-based clustering and a procedural approach, Fisher & Jaikumar algorithm. After getting the result of clustering, it has been developed the optiamal vehicle routes within clusters. Based on the result of numerical experiments, it can be said that the propsed approach based on CFRS may guarantee the better performance in terms of total travelling time and distance. At the same time, the variance of travelling distance and number of visiting customers among vehicles, it can be concluded that the proposed approach can guarantee the better performance of assigning tasks in terms of fairness.

Storm-Based Dynamic Tag Cloud for Real-Time SNS Data (실시간 SNS 데이터를 위한 Storm 기반 동적 태그 클라우드)

  • Son, Siwoon;Kim, Dasol;Lee, Sujeong;Gil, Myeong-Seon;Moon, Yang-Sae
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.6 no.6
    • /
    • pp.309-314
    • /
    • 2017
  • In general, there are many difficulties in collecting, storing, and analyzing SNS (social network service) data, since those data have big data characteristics, which occurs very fast with the mixture form of structured and unstructured data. In this paper, we propose a new data visualization framework that works on Apache Storm, and it can be useful for real-time and dynamic analysis of SNS data. Apache Storm is a representative big data software platform that processes and analyzes real-time streaming data in the distributed environment. Using Storm, in this paper we collect and aggregate the real-time Twitter data and dynamically visualize the aggregated results through the tag cloud. In addition to Storm-based collection and aggregation functionalities, we also design and implement a Web interface that a user gives his/her interesting keywords and confirms the visualization result of tag cloud related to the given keywords. We finally empirically show that this study makes users be able to intuitively figure out the change of the interested subject on SNS data and the visualized results be applied to many other services such as thematic trend analysis, product recommendation, and customer needs identification.

Development of big data based Skin Care Information System SCIS for skin condition diagnosis and management

  • Kim, Hyung-Hoon;Cho, Jeong-Ran
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.3
    • /
    • pp.137-147
    • /
    • 2022
  • Diagnosis and management of skin condition is a very basic and important function in performing its role for workers in the beauty industry and cosmetics industry. For accurate skin condition diagnosis and management, it is necessary to understand the skin condition and needs of customers. In this paper, we developed SCIS, a big data-based skin care information system that supports skin condition diagnosis and management using social media big data for skin condition diagnosis and management. By using the developed system, it is possible to analyze and extract core information for skin condition diagnosis and management based on text information. The skin care information system SCIS developed in this paper consists of big data collection stage, text preprocessing stage, image preprocessing stage, and text word analysis stage. SCIS collected big data necessary for skin diagnosis and management, and extracted key words and topics from text information through simple frequency analysis, relative frequency analysis, co-occurrence analysis, and correlation analysis of key words. In addition, by analyzing the extracted key words and information and performing various visualization processes such as scatter plot, NetworkX, t-SNE, and clustering, it can be used efficiently in diagnosing and managing skin conditions.

A Study on the Reliability and Validity of the Collection of the Ethnography Method of Service Experience Data - Focusing on I know You_AI Service - (서비스경험데이터의 에스노그라피 방식 수집에 대한신뢰성과 타당성 연구 - I know you_AI 서비스를 중심으로 -)

  • Ahn, Jinho;Lee, Jeungsun
    • Journal of Service Research and Studies
    • /
    • v.10 no.4
    • /
    • pp.43-55
    • /
    • 2020
  • Recently, as the importance of experience data increases, there are many attempts to deal with experience data from a data science perspective. In the case of approaching as a collection method of a quantitative survey method that seeks to quantify numerically such as big data, it is difficult to interpret the value of experience in a wide range, and it is relatively expensive and time consuming, and personal information infringement There is a limit to the analysis due to the risk of However, since ethnography, a procedure for collecting experience data based on qualitative research, is mainly carried out in the natural real environment of future customers from the perspective of users, it is possible to confirm the nature that customers face with a small sample. In addition, it is also easy to interpret the relational dimension of the empirical data. Although the ethnography method of collecting experiential data is economical and efficient, it is important to reduce errors in the collection process because the lack of scientific procedures for the data collection process can be a problem. It is important to secure the validity of whether the correct measurement tool is used for ethnography-based experiential data collection and to secure the reliability of the use of a valid measurement tool and method by accurately selecting the measurement target. From this point of view, it is necessary to verify the reliability of the research method that clearly selects the measurement target and secures the validity for the development of the correct measurement method and tool for the collection of ethnography experience data. Therefore, in this study, a verification study was conducted on the data and methodology cases of the'I know you_AI' service that analyzes the customer experience of self-employed based on the ethnography method of collecting experience data..

Methodology for Identifying Key Factors in Sentiment Analysis by Customer Characteristics Using Attention Mechanism

  • Lee, Kwangho;Kim, Namgyu
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.3
    • /
    • pp.207-218
    • /
    • 2020
  • Recently, due to the increase of online reviews and the development of analysis technology, the interest and demand for online review analysis continues to increase. However, previous studies have not considered the emotions contained in each vocabulary may differ from one reviewer to another. Therefore, this study first classifies the customer group according to the customer's grade, and presents the result of analyzing the difference by performing review analysis for each customer group. We found that the price factor had a significant influence on the evaluation of products for customers with high ratings. On the contrary, in the case of low-grade customers, the degree of correspondence between the contents introduced in the mall and the actual product significantly influenced the evaluation of the product. We expect that the proposed methodology can be effectively used to establish differentiated marketing strategies by identifying factors that affect product evaluation by customer group.

A Study on the Comparison Analysis of Travel Agencies using Social Big Data (소셜 빅 데이터를 이용한 여행사 비교 분석에 관한 연구)

  • Song, Eun-Jee;Kong, Hyou-Soon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.05a
    • /
    • pp.771-772
    • /
    • 2015
  • 소셜미디어 상 고객들이 쏟아내는 말을 실시간으로 분석, 조사하는 방법으로 버즈 모니터링 이라는 시스템을 이용하여 웹상의 다양한 정보를 자동으로 검색하고 수집하고 있다. 본 논문에서는 여행사에 관해 소셜 미디어 상의 빅 데이터를 이용하여 보다 정확하고 효율적인 정보 수집과 분석이 가능하도록 하기위한 분석 모델을 제안하고 실제 국내 여행사에 관해 비교 분석한다. 먼저 여행사별 인지도,이미지와 선호도 분석을 하고 관광관련 상품과 서비스에 대한 분석과 함께 소비자 분석으로서 관광의 목적, 동행인 등 소비자의 생활패턴에 대한 분석을 한다. 또한 여행사 관련 영향력자 경향을 트위터 상에서 살펴본 결과 해당 여행사 이용경험자와 관련 뉴스를 제공하는 언론, 이벤트에 관심 있는 사용자들로 유형화 할 수 있었다.

  • PDF

Security Log collection and analysis System Design Using Big Data System (빅 데이터 시스템을 이용한 보안 로그 수집 및 분석 시스템 설계)

  • Kim, Du-Hoe;Shin, Dong-Kyoo;Shin, Dong-Il
    • Annual Conference of KIPS
    • /
    • 2016.04a
    • /
    • pp.321-323
    • /
    • 2016
  • 최근 SNS, 클라우드 서비스, IoT 등 신기술이 발전함에 따라서 개인 정보 보호와 보안에 관심이 대두 되었다. 때문에 기업들은 고객 정보 보호를 위한 보안 솔루션 구축이 필수불가결해졌다. 이러한 기업의 니즈를 충족시키기 위해 ESM이라는 보안 관리 시스템이 등장하고 최근에는 SIEM으로 넘어가고 있는 추세이다. SIEM은 관리자가 로그들을 모니터링 하는 방식으로 많은 양의 로그가 발생하거나 축적된 로그들을 분석하는 것은 한계가 있다. 따라서 본 논문에서는 빅 데이터 시스템을 이용하여 로그들을 축적하고 머하웃을 이용하여 축적된 로그들을 분석하는 자동화 시스템을 제안한다.