• Title/Summary/Keyword: 계획 최적화

Search Result 1,535, Processing Time 0.028 seconds

Optimization of Encapsulation Conditions for Fermented Red Ginseng Extracts by Using Cyclodextrin (Cyclodextrin을 이용한 발효홍삼농축액 최적 포접 조건)

  • Shin, Myung-Gon;Lee, Gyu-Hee
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.44 no.11
    • /
    • pp.1708-1714
    • /
    • 2015
  • Fermented red ginseng concentrate is known as a healthy food source, whereas it has off-flavor such as bitterness and sour flavor based on fermentation. ${\beta}$- and ${\gamma}$-cyclodextrin (CD) were used to encapsulate the off-flavor of fermented red ginseng concentrate by using response surface methodology design on ${\beta}$- and ${\gamma}-CD$ combination. The reducing effects were analyzed by sensory evaluation for bitter and sour tastes, ginsenoside Rb1, and total acidity. The optimized mixing ratio of ${\beta}$- and ${\gamma}-CD$ for reducing bitterness was the least expected value of 2.07 at ${\beta}-CD$ 3.74% versus the soluble solid content of fermented red ginseng concentrate and the ${\gamma}-CD$ 20.63% mixture. The encapsulation effects of ginsenoside Rb1 were the most expected value of 96.75% at ${\beta}-CD$ 3.47% and ${\gamma}-CD$ 19.89% mixture. The encapsulation effects of sour taste were the least expected value of 5.63 at ${\beta}-CD$ 9.34% and ${\gamma}-CD$ 9.96% mixture. The encapsulation effects of lactic acid were the most expected value of 67.73% at ${\beta}-CD$ 16.0% and ${\gamma}-CD$ 13.18% mixture. Based on encapsulation and each optimized combination, the most effective entrapping ${\beta}$-and ${\gamma}-CD$ combination ratio was ${\beta}-CD$ 10% and ${\gamma}-CD$ 13%.

Optimization of Hot-Water Extraction Conditions for Preparation of Polyphenol and Gallic Acid from Acorn (도토리의 Polyphenol 및 Gallic Acid 성분의 열수 추출조건 최적화)

  • Kim, Seong-Ho;Lee, Jin-Man
    • Food Science and Preservation
    • /
    • v.15 no.1
    • /
    • pp.58-65
    • /
    • 2008
  • The Acorn (Quercus acutissima CARRUTHERS), which contains a large quantity of tannin, should be developed as a processed food as the acorn is rich in natural antioxidants and other valuable components. Accordingly, acorn extraction conditions for polyphenol and gallic acid (both antioxidants) were investigated by response surface methodology. The content of polyphenols were determined under 16 different extraction conditions based upon a central composite design. The parameters varied over $30-70^{\circ}C$ of extraction temperature, 1-5 h of extraction time, and 5-25 mL/g of solvent ratio, Gallic acid extraction was optimal at $60-100^{\circ}C$ extraction temperature, 1-5 h of extraction time, and 5-25 mL/g of solvent ratio, Epicatechin content was highest at $56.77^{\circ}C$, 4.16 hand 22.38 mL/g. Catechin content was highest at $52.37^{\circ}C$, 2h and 23.59 mL/g. The maximum catechin content was $91.30{\mu}g/mL$. Epigallocatechin content was influenced by extraction temperature and time. The maximum epigallocatechin content was $1,066.56{\mu}g/mL$ at $61.42^{\circ}C$, 4.17h, and 9.25 mL/g. The maximum value of epicatechingallate content was $125.39{\mu}g/mL$ at $47.72^{\circ}C$, 3.04h, and 24.93mL/g. Epigallocatechingallate content was influenced principally by solvent ratio and the maximum content was $61.38{\mu}g/mL$ at $48.11^{\circ}C$, 2.96h, and 24.95mL/g. The total polyphenol content was maximal at $1,332.75{\mu}g/mL$, after extraction at $61.50^{\circ}C$, 4.24h, at 9.71mL/g. The higher the extraction temperature and the longer the extraction time, the greater the polyphenol content. Gallic acid content was highest, the maximal level was $30.51{\mu}g/mL$ after $65.84^{\circ}C$, 1.65h at 17.17 mL/g, and this was influenced principally by extraction time and solvent ratio.

A Study on the Coexistance of Ganghak(講學) and Yusik(遊息) space of Oksan Confucian Academy, Gyeongju: Directed Attention Restoration Theory Perspectives (주의집중 피로회복이론의 장으로 본 경주 옥산서원 강학 및 유식공간의 일원적 공간성)

  • Tak, Young-Ran;Sung, Jeong-Sang;Choi, Jong-Hee;Kim, Soon-Ae;Rho, Jae-Hyun
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.34 no.3
    • /
    • pp.50-66
    • /
    • 2016
  • This study attempts to understand and explain how "Directed Attention Restorative Environment (DARE)" is managed and fostered in "Gang-Hak (講學)" and "Yu-Sik (遊息)" spaces both inside and outside of Oksan Seowon Confucian Academy, Gyeongju. Directed Attention is a pivotal element in human information processing so that its restoration is crucial for effective thinking and learning. According to Kaplan & Kaplan's Attention Restoration Theory, an environment, in order to be restorative, should have four elements: 'Being Away,' 'Extent,' 'Fascination,' and 'Compatibility.' We could confirm OkSan Seowon Confucian Academy has an inner logic that integrates two basically different spacial concepts of "Jangsu" and "Yusik" and thus fosters the Attention Restorative Environment. Particularly, the Four Mountains and Five Platforms (四山五臺) surrounding the premises provides an excellent learning environment, and is in itself educational in terms of the Neo-Confucian epistemology with "Attaining Knowledge by way of Positioning Things (格物致知)" as its principle precept, and of its aesthetics with "Connectedness with Nature" as its central tenet. This study attempts to recapture the value of Korea's cultural heritage concerning the Human/Nature relationship; and it may provide useful insights and practical guidelines/grounds in designing today's schools and campuses, where the young people's needs for the Directed Attention- and Attention Restorative- Servicescapes seem to be greater than ever.

Optimization of Solvent Extraction Process on the Active Functional Components from Chinese Quince (모과내 기능성 유용성분 용매추출공정의 최적화)

  • Jeon, Ju-Yeong;Jo, In-Hee;Kyung, Hyun-Kyu;Kim, Hyun-A;Lee, Chang-Min;Choi, Yong-Hee
    • Food Engineering Progress
    • /
    • v.14 no.2
    • /
    • pp.92-98
    • /
    • 2010
  • In this study, various active functional components in Chinese Quince were extracted by solvent extraction method. A central composit design for optimization was applied to investigate the effects of independent variables such as solvent to sample ratio ($X_{1}$), extraction temperature ($X_{2}$), and extraction time ($X_{3}$) on the soluble solid contents ($Y_{1}$), total phenols ($Y_{2}$), electron donating ability ($Y_{3}$), browning color ($Y_{4}$) and reducing sugar contents ($Y_{5}$). It was found that extraction temperature and extraction time were the main effective factors in this extraction process. The maximum soluble solid contents of 35.77% was obtained at 26.38 mL/g ($X_{1}$), 72.82$^{\circ}C$ ($X_{2}$) and 74.86 min ($X_{3}$) in saddle point. Total phenols were rarely affected by solvent ratio and extraction time, but it was affected by extraction temperature. The maximum total phenols of 20.70% was obtained at 22.61 mL/g ($X_{1}$), 84.49$^{\circ}C$ ($X_{2}$), 77.25 min ($X_{3}$) in saddle point. The electron donating ability was affected by extraction time. The maximum electron donating ability of 94.12% was obtained at 10.65 mL/g ($X_{1}$), 67.78$^{\circ}C$ ($X_{2}$), 96.75 min ($X_{3}$) in saddle point. The maximum browning color of 0.32% was obtained at 23.77 mL/g ($X_{1}$), 87.27$^{\circ}C$ ($X_{2}$), 96.68 min ($X_{3}$) in saddle point. The maximum value of reducing sugar content of 10.55% was obtained at 26.83 mL/g ($X_{1}$), 82.167$^{\circ}C$ ($X_{2}$), 81.94 min ($X_{3}$). Reducing sugar content was affected by extraction time.

Development of Adjustable Head holder Couch in H&N Cancer Radiation Therapy (두경부암 방사선 치료 시 Set-Up 조정 Head Holder 장치의 개발)

  • Shim, JaeGoo;Song, KiWon;Kim, JinMan;Park, MyoungHwan
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.26 no.1
    • /
    • pp.43-50
    • /
    • 2014
  • In case of all patients who receive radiation therapy, a treatment plan is established and all steps of treatment are planned in the same geometrical condition. In case of head and neck cancer patients who undergo simulated treatment through computed tomography (CT), patients are fixed onto a table for planning, but laid on the top of the treatment table in the radiation therapy room. This study excogitated and fabricated an adjustable holder for head and neck cancer patients to fix patient's position and geometrical discrepancies when performing radiation therapy on head and neck cancer patients, and compared the error before and after adjusting the position of patients due to difference in weight to evaluate the correlation between patients' weight and range of error. Computed tomography system(High Advantage, GE, USA) is used for phantom to maintain the supine position to acquire the images of the therapy site for IMRT. IMRT 4MV X-rays was used by applying the LINAC(21EX, Varian, U.S.A). Treatment planning system (Pinnacle, ver. 9.1h, Philips, Madison, USA) was used. The setup accuracy was compared with each measurement was repeated five times for each weight (0, 15, and 30Kg) and CBCT was performed 30 times to find the mean and standard deviation of errors before and after the adjustment of each weight. SPSS ver.19.0(SPSS Inc., Chicago, IL,USA) statistics program was used to perform the Wilcoxon Rank test for significance evaluation and the Spearman analysis was used as the tool to analyze the significance evaluation of the correlation of weight. As a result of measuring the error values from CBCT before and after adjusting the position due to the weight difference, X,Y,Z axis was $0.4{\pm}0.8mm$, $0.8{\pm}0.4mm$, 0 for 0Kg before the adjustment. In 15Kg CBCT before and after adjusting the position due to the weight difference, X,Y,Z axis was $0.2{\pm}0.8mm$, $1.2{\pm}0.4mm$, $2.0{\pm}0.4mm$. After adjusting position was X,Y,Z axis was $0.2{\pm}0.4mm$, $0.4{\pm}0.5mm$, $0.4{\pm}0.5mm$. In 30Kg CBCT before and after adjusting the position due to the weight difference, X,Y,Z axis was $0.8{\pm}0.4mm$, $2.4{\pm}0.5mm$, $4.4{\pm}0.8mm$. After adjusting position was X,Y,Z axis was $0.6{\pm}0.5mm$, $1.0{\pm}0mm$, $0.6{\pm}0.5mm$. When the holder for the head and neck cancer was used to adjust the ab.0ove error value, the error values from CBCT were $0.2{\pm}0.8mm$ for the X axis, $0.40{\pm}0.54mm$ for Y axis, and 0 for Z axis. As a result of statistically analyzing each value before and after the adjustment the value was significant with p<0.034 at the Z axis with 15Kg of weight and with p<0.038 and p<0.041 at the Y and Z axes respectively with 30Kg of weight. There was a significant difference with p<0.008 when the analysis was performed through Kruscal-Wallis in terms of the difference in the adjusted values of the three weight groups. As it could reduce the errors, patients' reproduction could be improved for more precise and accurate radiation therapy. Development of an adjustable device for head and neck cancer patients is significant because it improves the reproduction of existing equipment by reducing the errors in patients' position.