• Title/Summary/Keyword: 계층적 기계학습

Search Result 50, Processing Time 0.03 seconds

Continuous Multiple Prediction of Stream Data Based on Hierarchical Temporal Memory Network (계층형 시간적 메모리 네트워크를 기반으로 한 스트림 데이터의 연속 다중 예측)

  • Han, Chang-Yeong;Kim, Sung-Jin;Kang, Hyun-Syug
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.1 no.1
    • /
    • pp.11-20
    • /
    • 2012
  • Stream data shows a sequence of values changing continuously over time. Due to the nature of stream data, its trend is continuously changing according to various time intervals. Therefore the prediction of stream data must be carried out simultaneously with respect to multiple intervals, i.e. Continuous Multiple Prediction(CMP). In this paper, we propose a Continuous Integrated Hierarchical Temporal Memory (CIHTM) network for CMP based on the Hierarchical Temporal Memory (HTM) model which is a neocortex leraning algorithm. To develop the CIHTM network, we created three kinds of new modules: Shift Vector Senor, Spatio-Temporal Classifier and Multiple Integrator. And also we developed learning and inferencing algorithm of CIHTM network.

Association Rules Analysis of Safe Accidents Caused by Falling Objects (낙하물에 기인한 안전사고의 연관규칙 분석)

  • Son, Ki-Young;Ryu, Han-Guk
    • Journal of the Korea Institute of Building Construction
    • /
    • v.19 no.4
    • /
    • pp.341-350
    • /
    • 2019
  • Construction industry is one of the most dangerous industry. As the construction accidents occur due to the repeated factors found in each accidents, there is a limitation in analyzing all types of occupational accidents by the existing descriptive analysis and statistical test. In this study, we classified safety accidents caused by falling objects among the accident types occurring at construction sites into fatal and nonfatal accidents and deduced the factors. In addition, we deduced the association rules among the safety accidents factors caused by falling objects through the association rule analysis method among the machine learning techniques. Therefore, considering the association rules for fatal and nonfatal accidents proposed in this study, it would be possible to prevent accidents by searching for countermeasures against safety accidents caused by falling objects.

Development of an HTM Network Training System for Recognition of Molding Parts (부품 이미지 인식을 위한 HTM 네트워크 훈련 시스템 개발)

  • Lee, Dae-Han;Bae, Sun-Gap;Seo, Dae-Ho;Kang, Hyun-Syug;Bae, Jong-Min
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.11
    • /
    • pp.1643-1656
    • /
    • 2010
  • It is necessary to develop a system to judge inferiority of goods to minimize the loss at small factories in which produces various kinds of goods with small amounts. That system can be developed based on HTM theory. HTM is a model to apply the operation principles of the neocortex in human brain to the machine learning. We have to build the trained HTM network to use the HTM-based machine learning system. It requires the knowledge for the HTM theory. This paper presents the design and implementation of the training system to support the development of HTM networks which recognize the molding parts to judge its badness. This training system allows field technicians to train the HTM network with high accuracy without the knowledge of the HTM theory. It also can be applied to any kind of the HTM-based judging systems for molding parts.

A Design of Super Value based Flexible KEB Reasoning System (Super Value 기반의 유연한 KEB 추론 시스템의 설계)

  • Shim, JeongYon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.5
    • /
    • pp.137-143
    • /
    • 2013
  • In recent years there have been many efforts for changing from machine oriented technology to human oriented technology gradually. In the research of Intelligent system, the previous simple learning and reasoning methods are also changing to human like processing, namely the direction of implementing humanity. Especially as Neuro Engineering research is getting active, the studies on application of brain function are increasing in the engineering aspects. In this paper, we defined Super Value as a concept which reflect the higher value of 'viewpoint' and proposed flexible KEB(Knowledge-Emotion Binding) System. The system has a hierarchical structure which consists of Main level and Super level for flexibility and it is designed for having the function of extracting KEB Threads by Reasoning mechanism.

An Displacement Detection Model in Cultural Asset Images using Object-centric Augmentation (객체 중심 증강 기법을 사용한 목조 문화재 영상에서의 변위 감지 모델)

  • Kang, Jaeyong;Kim, Inki;Lim, Hyunseok;Gwak, Jeonghwan
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.07a
    • /
    • pp.137-139
    • /
    • 2021
  • 본 논문에서는 목조 문화재 영상에서의 변위를 효율적으로 감지하기 위한 객체 중심 증강 기법을 사용한 모델을 제안한다. 우선 객체 중심 증강 기법을 적용하여 변위 객체들이 이미지 공간상의 어느 곳이든 위치할 수 있게끔 데이터를 구성한 이후 사전 학습된 합성 곱 신경망을 사용하여 입력 이미지에 대한 심층 특징 벡터를 추출한다. 그 이후 심층 특징 벡터는 완전 연결 계층의 입력 값으로 들어와서 최종적으로 변위가 존재하는지 아닌지에 대한 예측을 수행하게 된다. 데이터 셋으로는 충주시 근처의 문화재에 방문해서 수집한 목조 문화재 이미지를 가지고 정상 및 비정상으로 구분한 데이터 셋을 사용하였다. 실험 결과 우리가 제안한 객체 중심 증강 기법을 사용한 모델이 객체 중심 증강 기법을 사용하지 않은 모델보다 목조 문화재에서 변위 영역을 더 잘 감지함을 확인하였다. 이러한 결과로부터 우리가 제안한 방법이 목재 문화재의 변위 검출에 있어서 매우 적합함을 보여준다.

  • PDF

A layered-wise data augmenting algorithm for small sampling data (적은 양의 데이터에 적용 가능한 계층별 데이터 증강 알고리즘)

  • Cho, Hee-chan;Moon, Jong-sub
    • Journal of Internet Computing and Services
    • /
    • v.20 no.6
    • /
    • pp.65-72
    • /
    • 2019
  • Data augmentation is a method that increases the amount of data through various algorithms based on a small amount of sample data. When machine learning and deep learning techniques are used to solve real-world problems, there is often a lack of data sets. The lack of data is at greater risk of underfitting and overfitting, in addition to the poor reflection of the characteristics of the set of data when learning a model. Thus, in this paper, through the layer-wise data augmenting method at each layer of deep neural network, the proposed method produces augmented data that is substantially meaningful and shows that the method presented by the paper through experimentation is effective in the learning of the model by measuring whether the method presented by the paper improves classification accuracy.

Utilizing Experiences of Supervisor in Sequential Learning for Multilayer Perceptron (지도 경험을 활용한 다계층 퍼셉트론의 순차적 학습 방법)

  • Lee, Jae-Young;Kim, Hwang-Soo
    • Journal of KIISE:Software and Applications
    • /
    • v.37 no.10
    • /
    • pp.723-735
    • /
    • 2010
  • Evaluating the level of achievement and providing the knowledge which is appropriate at the evaluated level have great influence in studying of the human beings. This shows the importance of the order of training and the training order should be considered in machine learning. In this research, to assess the influence of the order of training, we propose a method of controlling the order of training samples utilizing the experience of supervisor in the training of MLP. The supervisor finds out the current state of MLP using teaching experience and student evaluation, and then selects the most instructive sample for MLP in that state. We use CRF to represent and utilize the experience of supervisor. While the proposed method is similar to active learning in selecting samples, it is basically different in that selection is not to reduce the number of samples to be used but to assist the learning progress. The result from classification problem shows that the method is usually effective in terms of time taken in training in contrast to random selection.

A Bulge Detection Model in Cultural Asset images using Ensemble of Deep Features (심층 특징들의 앙상블을 사용한 목조 문화재 영상에서의 배부름 감지 모델)

  • Kang, Jaeyong;Kim, Inki;Lim, Hyunseok;Gwak, Jeonghwan
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.07a
    • /
    • pp.129-131
    • /
    • 2021
  • 본 논문에서는 심층 특징 앙상블을 사용하여 목조 문화재의 변위 현상 중 하나인 배부름 현상을 감지할 수 있는 모델을 제안한다. 우선 총 4개의 서로 다른 사전 학습된 합성 곱 신경망을 사용하여 입력 영상에 대한 심층 특징들을 추출한다. 그 이후 4개의 서로 다른 심층 특징들을 결합하여 하나의 특징 벡터를 생성한다. 그 이후 합쳐진 특징 벡터는 완전 연결 계층의 입력 값으로 들어와서 최종적으로 변위가 존재하는지 아닌지에 대한 예측을 수행하게 된다. 데이터 셋으로는 충주시 근처의 문화재에 방문해서 수집한 목조 문화재 이미지를 가지고 정상 및 비정상으로 구분한 데이터 셋을 사용하였다. 실험 결과 심층 특징 앙상블 기법을 사용한 모델이 앙상블 기법을 사용하지 않은 모델보다 더 좋은 성능을 나타냄을 확인하였다. 이러한 결과로 부터 우리가 제안한 방법이 목재 문화재의 배부름 현상에 대한 변위 검출에 있어서 매우 적합함을 보여준다.

  • PDF

An Ensemble Deep Learning Model for Measuring Displacement in Cultural Asset images (목조 문화재 영상에서의 변위량 측정을 위한 앙상블 딥러닝 모델)

  • Kang, Jaeyong;Kim, Inki;Lim, Hyunseok;Gwak, Jeonghwan
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.07a
    • /
    • pp.141-143
    • /
    • 2021
  • 본 논문에서는 목조 문화재의 변위량을 감지할 수 있는 앙상블 딥러닝 모델 모델을 제안한다. 우선 총 2개의 서로 다른 사전 학습된 합성 곱 신경망을 사용하여 입력 영상에 대한 심층 특징들을 추출한다. 그 이후 2개의 서로 다른 심층 특징들을 결합하여 하나의 특징 벡터를 생성한다. 그 이후 합쳐진 특징 벡터는 완전 연결 계층의 입력 값으로 들어와서 최종적으로 변위의 심각 단계에 대한 예측을 수행하게 된다. 데이터 셋으로는 충주시 근처의 문화재에 방문해서 수집한 목조 문화재 이미지를 가지고 정상 및 비정상으로 구분한 데이터 셋을 사용하였다. 실험 결과 앙상블 딥러닝 기법을 사용한 모델이 앙상블 기법을 사용하지 않는 모델보다 더 좋은 성능을 나타냄을 확인하였다. 이러한 결과로부터 우리가 제안한 방법이 목재 문화재의 변위량 예측에 있어서 매우 적합함을 보여준다.

  • PDF

Exploring Cancer-Specific microRNA-mRNA Interactions by Evolutionary Layered Hypernetwork Models (진화연산 기반 계층적 하이퍼네트워크 모델에 의한 암 특이적 microRNA-mRNA 상호작용 탐색)

  • Kim, Soo-Jin;Ha, Jung-Woo;Zhang, Byoung-Tak
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.10
    • /
    • pp.980-984
    • /
    • 2010
  • Exploring microRNA (miRNA) and mRNA regulatory interactions may give new insights into diverse biological phenomena. Recently, miRNAs have been discovered as important regulators that play a major role in various cellular processes. Therefore, it is essential to identify functional interactions between miRNAs and mRNAs for understanding the context- dependent activities of miRNAs in complex biological systems. While elucidating complex miRNA-mRNA interactions has been studied with experimental and computational approaches, it is still difficult to infer miRNA-mRNA regulatory modules. Here we present a novel method, termed layered hypernetworks (LHNs), for identifying functional miRNA-mRNA interactions from heterogeneous expression data. In experiments, we apply the LHN model to miRNA and mRNA expression profiles on multiple cancers. The proposed method identifies cancer-specific miRNA-mRNA interactions. We show the biological significance of the discovered miRNA- mRNA interactions.