An Displacement Detection Model in Cultural Asset Images using Object-centric Augmentation

객체 중심 증강 기법을 사용한 목조 문화재 영상에서의 변위 감지 모델

  • Kang, Jaeyong (Dept. of Software, Korea National University of Transportation) ;
  • Kim, Inki (Dept. of IT.Energy Convergence, Korea National University of Transportation) ;
  • Lim, Hyunseok (Dept. of Software, Korea National University of Transportation) ;
  • Gwak, Jeonghwan (Dept. of Software, Korea National University of Transportation)
  • 강재용 (한국교통대학교 소프트웨어학전공) ;
  • 김인기 (한국교통대학교 교통에너지융합학과) ;
  • 임현석 (한국교통대학교 소프트웨어학전공) ;
  • 곽정환 (한국교통대학교 소프트웨어학전공)
  • Published : 2021.07.14

Abstract

본 논문에서는 목조 문화재 영상에서의 변위를 효율적으로 감지하기 위한 객체 중심 증강 기법을 사용한 모델을 제안한다. 우선 객체 중심 증강 기법을 적용하여 변위 객체들이 이미지 공간상의 어느 곳이든 위치할 수 있게끔 데이터를 구성한 이후 사전 학습된 합성 곱 신경망을 사용하여 입력 이미지에 대한 심층 특징 벡터를 추출한다. 그 이후 심층 특징 벡터는 완전 연결 계층의 입력 값으로 들어와서 최종적으로 변위가 존재하는지 아닌지에 대한 예측을 수행하게 된다. 데이터 셋으로는 충주시 근처의 문화재에 방문해서 수집한 목조 문화재 이미지를 가지고 정상 및 비정상으로 구분한 데이터 셋을 사용하였다. 실험 결과 우리가 제안한 객체 중심 증강 기법을 사용한 모델이 객체 중심 증강 기법을 사용하지 않은 모델보다 목조 문화재에서 변위 영역을 더 잘 감지함을 확인하였다. 이러한 결과로부터 우리가 제안한 방법이 목재 문화재의 변위 검출에 있어서 매우 적합함을 보여준다.

Keywords

Acknowledgement

This work was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (Grant No. NRF-2020R1I1A3074141), the Brain Research Program through the NRF funded by the Ministry of Science, ICT and Future Planning (Grant No. NRF-2019M3C7A1020406), and "Regional Innovation Strategy (RIS)" through the NRF funded by the Ministry of Education.