• Title/Summary/Keyword: 계절별 예측

Search Result 232, Processing Time 0.028 seconds

Seasonal Prediction Model for Urban Water Demand (급수수요량의 계절별 예측모델에 관한 연구)

  • Gu, Ja-Yong
    • 수도
    • /
    • v.23 no.6 s.81
    • /
    • pp.36-46
    • /
    • 1996
  • 급수 수요량의 단기예측은 상수도 시스템의 유지관리 계획 수립의 중요한 구성 요소이며, 대상지역의 특성을 민감하게 반영하고 있으므로, 급수수요의 지역 특성과 관련된 수요 구조의 파악이 무엇보다 중요한 과제라 할 수 있다. 따라서 본 논문에서는 상수도 시스템의 합리적 배수 제어 획을 실시하기 위한 기초적 정보인 급수량 변동 구조에 대해 통계적인 분석을 실시하였다. 특히 일단위의 급수량에 초점을 두어 급수량의 시계열 특성과 급수량 영향 요인 분석을 통하여 대상 지역의 정상 시계열장과 급수량에 영향을 미치는 요인을 분석하였다. 또한 급수량의 계절별 단기 수요 예측 모델을 제안하기 위하여 통계적 예측 수법으로 평가 받고 있는 MARIMA (Multiple Auto Regressive Integrated Moving Average) 모델을 급수량 단기 수요 예측에 적용하여 계절별 급수 수요량을 예측하였다.

  • PDF

패널 승법 계절 시계열 모형의 동질성 검정과 적용

  • 이성덕;김성호;차경엽
    • Communications for Statistical Applications and Methods
    • /
    • v.3 no.1
    • /
    • pp.29-37
    • /
    • 1996
  • 계절성을 갖는 승법 계절 혼합 시계열 모형들의 동질성 검정을 위하여 Wald 검정 통계량을 구하고 그 극한 분포가 ${\chi}^2$-분포함을 보였으며 시뮬레이션 연구를 통하여 뒷받침하였다. 도시 규모가 비슷한 우리나라 지역별 평균 온도자료를 가지고 이 동질성 검정을 수행하여 시계열을 지역별로 모형화하여 예측한 것과 동질성이 있는 것을 묶고 모형화하여 예측한 것에 대한 예측 오차를 비교하였다.

  • PDF

Hourly electricity demand forecasting based on innovations state space exponential smoothing models (이노베이션 상태공간 지수평활 모형을 이용한 시간별 전력 수요의 예측)

  • Won, Dayoung;Seong, Byeongchan
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.4
    • /
    • pp.581-594
    • /
    • 2016
  • We introduce innovations state space exponential smoothing models (ISS-ESM) that can analyze time series with multiple seasonal patterns. Especially, in order to control complex structure existing in the multiple patterns, the model equations use a matrix consisting of seasonal updating parameters. It enables us to group the seasonal parameters according to their similarity. Because of the grouped parameters, we can accomplish the principle of parsimony. Further, the ISS-ESM can potentially accommodate any number of multiple seasonal patterns. The models are applied to predict electricity demand in Korea that is observed on hourly basis, and we compare their performance with that of the traditional exponential smoothing methods. It is observed that the ISS-ESM are superior to the traditional methods in terms of the prediction and the interpretability of seasonal patterns.

Seasonal Heavy Rain Forecast Using SVMs (SVM을 이용한 계절별 호우 상황 예측 기법)

  • Lee, Jaedong;Lee, Sungwoo;Kim, Jaekwang;Lee, Jee-Hyong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2012.04a
    • /
    • pp.324-326
    • /
    • 2012
  • 본 연구에서는 날씨를 나타내는 속성들의 값을 이용하여 현재로부터 6시간 후의 호우/비호우를 예측하기 위한 기법을 연구한다. 본 연구를 통해 호우/비호우 예측을 할 때 각 속성 값들이 호우, 비호우를 나타내는 일기도의 특정 패턴에 영향을 받는지 혹은 계절별로 영향을 받는지를 살펴보았다. 실험을 위하여 20년 누적 일기도를 SVM으로 학습하고 호우와 비호우 각각의 정답 집합을 이용하여 테스트 하였다. 실험 결과 SVM의 호우 예측도는 최대 70% 정도의 정확률을 보였으며 예측에 영향을 주는 것은 특정 패턴보다는 계절에 따른 변화임을 알아내었다.

Performance Evaluation of LSTM-based PM2.5 Prediction Model for Learning Seasonal and Concentration-specific Data (계절별 데이터와 농도별 데이터의 학습에 대한 LSTM 기반의 PM2.5 예측 모델 성능 평가)

  • Yong-jin Jung;Chang-Heon Oh
    • Journal of Advanced Navigation Technology
    • /
    • v.28 no.1
    • /
    • pp.149-154
    • /
    • 2024
  • Research on particulate matter is advancing in real-time, and various methods are being studied to improve the accuracy of prediction models. Furthermore, studies that take into account various factors to understand the precise causes and impacts of particulate matter are actively being pursued. This paper trains an LSTM model using seasonal data and another LSTM model using concentration-based data. It compares and analyzes the PM2.5 prediction performance of the two models. To train the model, weather data and air pollutant data were collected. The collected data was then used to confirm the correlation with PM2.5. Based on the results of the correlation analysis, the data was structured for training and evaluation. The seasonal prediction model and the concentration-specific prediction model were designed using the LSTM algorithm. The performance of the prediction model was evaluated using accuracy, RMSE, and MAPE. As a result of the performance evaluation, the prediction model learned by concentration had an accuracy of 91.02% in the "bad" range of AQI. And overall, it performed better than the prediction model trained by season.

Seasonal Unit Roots in Stock Prices (계절적 변동과 주가의 형성 : 계절적 단위근)

  • Rhee, Il-King
    • The Korean Journal of Financial Management
    • /
    • v.16 no.1
    • /
    • pp.171-191
    • /
    • 1999
  • 시간의 흐름에 걸친 주가시계열의 행동양식에 대한 연구에서는 선형성, 비선형성, 장기기억, 항상성분 등에 대한 명확한 결론을 내리고 있지 못한 실정이다. 주가 시계열과정을 설명하고 예측하기 위한 여러 모형들에 대한 실증연구에는 설명력과 예측력을 완벽하게 갖추고 있지 못하고 있다는 증거들이 제시되고 있다. 계절적 변동을 주가시계열에 적용하지 않는 관계로 이와 같은 결과가 발생할 가능성이 존재한다. 분기별 종합주가지수의 수익률에 계절적 단위근이 존재하고 있음이 실증분석을 통하여 밝혀졌다. 이 시계열에서는 계절적 단위근을 제거하기 위하여서는 제4계 시차 작용소가 적절한 필터임이 인정되었다. 월별 종합주가지수의 수익률에서도 계절적 단위근이 존재하고 있다. 따라서 제12계 시차 작용소를 사용하여 계절적 단위근을 제거하여야 할 것이다. 분기별 수익률에는 제4차 시차 작용소를, 월별수익률에서는 제12차 시차 작용소를 필터로 사용하여 이 시계열들을 차분화하고 이 차분화를 통하여 계절적 단위근을 제거한 후에 이 시계열들의 시계열적 성질과 특성을 탐구해야 할 것이다. 이 과정을 통할 때 시계열 과정에 대한 계량경제학적 모형에 대한 정확한 추론이 가능하게 된다.

  • PDF

Comparing Monthly Precipitation Predictions Using Time Series Analysis with Deep Learning Models (시계열 분석 및 딥러닝 모형을 활용한 월 강수량 예측 비교)

  • Chung, Yeon-Ji;Kim, Min-Ki;Um, Myoung-Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.44 no.4
    • /
    • pp.443-463
    • /
    • 2024
  • This study sought to improve the accuracy of precipitation prediction by utilizing monthly precipitation data for each region over the past 30 years. Using statistical models (ARIMA, SARIMA) and deep learning models (LSTM, GBM), we learned monthly precipitation data from 1983 to 2012 in Gangneung, Gwangju, Daegu, Daejeon, Busan, Seoul, Jeju, and Chuncheon. Based on this, monthly precipitation was predicted for 10 years from 2013 to 2022. As a result of the prediction, most models accurately predicted the precipitation trend, but showed a tendency to underpredict the actual precipitation. To solve these problems, appropriate models were selected for each region and season. The LSTM model showed suitable results in Gangneung, Gwangju, Daegu, Daejeon, Busan, Seoul, Jeju, and Chuncheon. When comparing forecasting power by season, the SARIMA model showed particularly suitable forecasting performance in winter in Gangneung, Gwangju, Daegu, Daejeon, Seoul, and Chuncheon. Additionally, the LSTM model showed higher performance than other models in the summer when precipitation is concentrated. In conclusion, closely analyzing regional and seasonal precipitation patterns and selecting the optimal prediction model based on this plays a critical role in increasing the accuracy of precipitation prediction.

웨이블렛(wavelet)을 이용한 경제시계열의 분해 및 예측

  • Lee, Geung-Hui
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2005.11a
    • /
    • pp.25-30
    • /
    • 2005
  • 경제정책과 관련하여 경제시계열을 작성하는 중요한 목적중 하나는 순환변동을 파악할 수 있는 정보를 제공하는 것이다. 그런데 월별 또는 분기별로 작성되는 경제시계열은 계절변동 및 불규칙변동으로 인해 순환변동 등 기조적 변화를 잘못 파악하기 쉽다. 경제시계열의 기조적 변화를 파악하기 위해서는 원래의 경제시계열에서 계절변동, 불규칙변동을 분해 후 제거해서 분석해야 한다. 이 논문에서는 웨이블렛(wavelet)을 이용하여 시계열을 분해하고 이를 통해 경제시계열의 순환변동 등을 구하고 분해 요소들을 따로 예측한 후 결합된 예측을 시도한다.

  • PDF

Sales Forecasting for Inventory Control on Seasonal fashion product (계절유행상품 재고관리를 위한 판매예측)

  • 안봉근
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2002.05a
    • /
    • pp.953-959
    • /
    • 2002
  • 계절유행상품의 수요는 연중 성수기가 길지 않고 매년 유행과 제품디자인 변화가심한 경향이 있어 수요예측에 과거의 판매정보의 유용성이 크지 않다. 성수기 초반의 수요가 연간 수요결정에 매우 중요하며 후반부수요가 급격히 감소하는 특성이 있다. 반면 이월상품의 잔존가치가 매우 낮지만 매출마진이 높아 수요예측의 정확도에 따라 수익률이 큰 영향을 받는다. 이러한 이유로 기존의 수요예측방법을 계절상품에 적용하기에 무리가 따르며 예측오차의 비용이 매우 커서 계절상품 관리에 이용할 수 없다. 본 연구에서 성수기를 하위기간으로 구분하여 시즌 초반부 수요발생시점을 측정하여 초반부 기간별수요량을 구하고 이를 근거로 기간 누적수요비율을 quantile regression에 의거 추정하여 기간별 수요량과 전제 수요량을 예측하는 방법을 제시하고 모의자료를 사용하여 이 모형의 우수성을 평가하였다.

  • PDF

Seasonal precipitation prediction using ICON model (ICON모델을 이용한 계절 강수 예측)

  • Kim, Ga Eun;Oh, Jai Ho
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.360-360
    • /
    • 2017
  • 이상기상현상의 발생횟수가 지속적으로 증가함에 따라 기상 예측은 국가 재난 관리에 중요한 요소로써 부상하고 있다. 계절예측 또한 재난관리의 한 부분으로, 농업, 에너지, 수자원 그리고 공공보건 등 다양한 분야에서 잠재적 위험을 파악하는데 도움이 되는 보조 자료로 활용이 가능하다. 본 연구에서는 ICON(ICOsahedral-Nonhydrostatic) 모델을 이용하여 2015년 여름철(JJA) 강수를 예측하였다. 2015년은 장마기간을 포함한 여름철 동안 평년대비 약 절반수준(54%)에 그치는 비가 내렸으며, 태풍으로 인한 강수량도 적어 연 강수량이 평년대비 72%로 역대 최저 3위를 기록하였다. 지역별로 보면 제주도와 남해안 지방을 제외한 대부분 지방에서 강수량이 적게 나타났으며, 수도권을 중심으로는 60% 미만의 강수량을 보였다. ICON 모델은 독일 기상청(DWD)과 막스플랑크 연구소(MPI-M)에서 공동 개발하여 현업 운영중인 전 지구 모델로 비정역학 코어를 사용한다. 전 지구를 정 20면체의 삼각형으로 격자화 시켜 모든 격자의 크기가 동일하고, 극점은 1개의 꼭짓점으로 구성되어 CFL(Courant-Friderich-Lewy) 문제가 해소될 수 있다. 또한 hybrid의 병렬구조를 사용하여 전산사용 효율성을 극대화 하는 특징이 있다. 강수의 계절 예측 수행 과정은 다음과 같다. 우선, 계절예측 자료 분석 시 활용할 ICON모델의 기후값을 생산하기 위해 30년(1980년~2009년)간의 AMIP기반 규준실험을 수행한다. 다음으로, SST와 Sea ice의 평년대비 현재 변동량을 계산하고, 이 자료는 모델 적분을 수행할 때 경계 자료로서 활용하게 된다. 계절 예측은 시간 지연기법(Time-lagged method)를 이용한 앙상블예측으로 수행하며, 예측하고자 하는 계절이 시작하기 약 1개원 이전부터 1일 간격으로 전 지구 모델의 초기자료를 다르게 선택하여 총 10개의 앙상블 멤버를 구성한다. 모델의 해상도는 수평 40km, 수직 90개 층으로 구성하였으며, 적분이 완료되면 AMIP기반 실험을 통해 모의된 기후값을 토대로 예측된 계절전망 자료의 변동성을 분석한다.

  • PDF