• Title/Summary/Keyword: 계수 최적화

Search Result 840, Processing Time 0.027 seconds

Contrast Optimization using of Weight-based Injection Protocol in Pediatric Abdomen CT Examination (소아 복부 CT 검사에서 체중에 기반한 조영제 주입 프로토콜 적용에 따른 조영증강의 최적화)

  • Kim, Yung-Kyoon;Han, Dong-Kyoon
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.5
    • /
    • pp.575-584
    • /
    • 2021
  • The aim of this study was to achieve optimal portal phase while reducing contrast medium by applying weight-based dose protocol compared to standard fixed dose protocol to performing of pediatric abdominal CT examination. Discovery 750HD (General Electric Medical Systems, Milwaukee, USA) was used, and a total of 167 children consisting of 85 men and 82 women under the age of 18 were studied. The group in which the 300 mgI/ml(Xenetix, Guerbet, France) contrast medium was fixedly injected at twice body weight and the group injected with physiological saline while gradually decreasing the injection amount by 10% while applying the weight-based protocol were distinguished. Also, the CT number and SNR of abdominal organs were compared and evaluated while changing the scan delay time. Subjective image quality of enhancement and beam-hardening artifacts of around the heart was assessed with five-point criterion. The group adapted weight-based protocol with 20% reduction in contrast medium was most similar in contrast enhancement in the group with fixed injection at twice body weight. Furthermore, the group with a delay time of 20% had the highest contrast enhancement effect, and the difference in CT attenuation coefficient from the group scanned immediately after injection of the contrast media. Therefore, the appropriate delay time after injection of the contrast agent increased the contrast enhancement of the parenchymal organ. In addition, the weight-based injection protocol with normal saline reduced artifacts around the heart, and the effect of contrast enhancement could be maintained. In conclusion, it is possible to reduce dosage of contrast media through the application of weight-based injection protocols and appropriate latency, and to characterize optimal portal phase imaging on pediatric abdominal CT.

Dermal Papilla Cells Proliferation Constituent of Schisandra chinensis Fruits and Optimization Using Response Surface Methodology (오미자의 모유두세포 증식 활성성분과 반응표면분석을 이용한 추출조건의 최적화)

  • Cho, Hyun Dae;Jeong, JiYeon;Ryu, Hwa Sun;Lee, JungNo;Park, Sung-Min
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.46 no.4
    • /
    • pp.415-424
    • /
    • 2020
  • In the present study, we have refined gomisin N, which represents activity in the proliferation of dermal papilla cells (HFDPCs) from the fruit of Schisandra chinensis (S. chinensis), and have identified optimal extraction conditions for obtaining extracts with high content of gomisin N. The activity of the extracts and fractions was evaluated, and the results indicated approximately 29% proliferation activity in the group treated with 1 ㎍/mL of n-hexane fraction. Column chromatography was used to assess the active ingredient in the n-hexane fraction, and two compounds, namely gomisin N(1) and schisandrin(2), were isolated and identified. When the HFDPCs proliferation activity was tested for the isolated compounds, gomisin N exhibited ≥ 20% proliferation activity. Thus, via response surface methodology (RSM), the optimum extraction conditions to obtain the maximum level of gomisin N from the fruit of S. chinensis were determined, where ethanol proportion, extraction time, and extraction temperature were used as the independent variables. The results revealed coefficient of determination ≥ 0.95 and p-value ≤ 0.05, which confirmed the fit of the model. The optimum extraction conditions to achieve the maximum content of gomisin N were as follows: ethanol proportion 83.8%, extraction temperature 80 ℃, and extraction time 8.7 h. The content of gomisin N using these conditions was predicted as 378,300 ppm, and a mean value close to the predicted value (376,884 ppm) was obtained while validating the aforementioned conditions.

Demonstration of Magnetoelectric Coupling Measurement at Off-Resonance and Resonance Conditions in Magnetoelectric Composites (자기전기복합체의 비공진 및 공진 상태에서의 자기전기 결합 특성 평가 방법)

  • Patil, Deepak Rajaram;Ryu, Jungho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.4
    • /
    • pp.333-341
    • /
    • 2022
  • Magnetoelectric (ME) composites are comprised of magnetostrictive and piezoelectric phases. Lots of theoretical and experimental works have been done on ME composites in the last couple of decades. The output performance of ME composites has been enhanced by optimizing the constituent phases, interface layer, dimensions of the ME composites, different operating modes, etc. However, the detailed information about the characterization of ME coupling in ME composites is not provided yet. Therefore, in this tutorial paper, we are giving an insight into the details of measurements of ME voltage coefficient of ME composites both at off-resonance and resonance conditions. A symmetric type Gelfenol/PMN-PZT/Gelfenol ME composites were fabricated by sandwiching (011) 32-mode PMN-PZT single crystal between two Galfenol plates by epoxy bonding are used for the example of ME coupling measurement. The details about the experimental setup used for the measurement of ME voltage coefficient are provided. Furthermore, a step-by-step measurement of ME voltage coefficient using computerized program is demonstrated. We believe the present experimental measurement details can help readers to understand the concept of ME coupling and its analysis.

Optimization of Skim Milk Fermentation Conditions by Response Surface Methodology to Improve ACE Inhibitory Activity Using Lactiplantibacillus plantarum K79 (반응표면법에 의한 Lactiplantibacillus plantarumK79를 이용한 ACE(Angiotensin Converting Enzyme) 억제활성 향상을 위한 탈지유 발효조건 최적화)

  • Park, Yu-Kyoung;Hong, Sang-Pil;Lim, Sang-Dong
    • Journal of Dairy Science and Biotechnology
    • /
    • v.40 no.3
    • /
    • pp.93-102
    • /
    • 2022
  • This study was conducted using response surface methodology (RSM) to elucidate fermentation conditions that will optimize ACE inhibitory activity using Lactiplantibacillus plantarum K79. Four independent variables [skim milk (with 1% added glucose) concentration (6%-14%), incubation temperature (32℃-42℃), incubation time (8-24 h), and amount of added starter (0.02%-0.2%)] were evaluated using five-level central composite design and response surface methodology to determine the optimum fermentation condition. The dependent variables were angiotensin converting enzyme (ACE) inhibitory activity (the value obtained from 102 diluted supernatant), and pH. The respective coefficients of determinations (R2) were 0.791 and 0.905 for ACE inhibitory activity and pH. The maximum ACE inhibitory activity was 90% under the following conditions: 10% skim milk (with 1% added glucose) concentration, 37℃ incubation temperature, 17.8 h incubation time, and 0.2% added starter. Based on the RSM, using predicted best ACE conditions for fermentation of 13.49% skim milk (with 1% added glucose) with 0.0578% starter at 33.4℃ for 21.5 h, the predicted ACE inhibitory activity and pH values were 86.69% and 4.6, respectively. Actual ACE inhibitory activity and pH values were 85.5% and 4.58, respectively

Study on establishment of emission cell test method for liquid phase building materials (방출셀을 이용한 액상건축자재 오염물질 방출시험방법 정립에 관한 연구)

  • Lim, Jungyun;Jang, Seongki;Seo, Sooyun
    • Analytical Science and Technology
    • /
    • v.22 no.3
    • /
    • pp.191-200
    • /
    • 2009
  • The aim of this study was to evaluate and establish of emission test method for liquid phase building materials such as paint, adhesive, sealant by emission cell. A small-scale emission chamber and emission cell were used to evaluate emission of TVOC from paint, adhesive, sealant. The quantity of TVOC emission were measured by a gas chromatography/mass spectrometry (GC/MS). Background concentration of TVOC was below $10{\mu}g/m^3$ in the emission chamber and cell. Air tightness and recovery in chamber and cell showed good results. The recovery of thermal desorber for toluene and n-dodecane were about 120%. The repeatability of response factor and retention time in GC/MS below 30%. The method detection limit of VOCs ranged 0.04~8.82 ng. The concentration of TVOC emission using emission cell was 1.35~1.41 times higher than emission chamber. The correlation of TVOC emission using chamber and cell method was significantly high (r=0.91~0.97).

Simultaneous analysis of residual glucocorticoids in egg by LC/MS/MS (LC/MS/MS를 이용한 계란 중 잔류 글루코코티코이드의 동시분석)

  • Jang, Mi-Ae;Myung, Seung-Woon
    • Analytical Science and Technology
    • /
    • v.22 no.4
    • /
    • pp.326-335
    • /
    • 2009
  • A specific analytical method able to identify and quantify traces of six glucocorticoids residues in eggs were developed. The extraction and clean-up parameters for simultaneous analysis were evaluated and HPLC and spectrometric conditions were also established. For determination of glucocorticoids, 5 g of egg was transferred into a test tube, adjusted pH 5.2 with acetate buffer and was $\beta$-glucuronidase/arylsulfatase from Helix pomatia added. The mixture was centrifuged and supernatant was extracted twice with 20 mL n-hexane. The extraction was performed with HLB cartridge using methanol, followed by clean-up with silica cartridge using methanol/ethyl acetate (4/6, v/v). The analytes were determined by HPLC/ESI-MS/MS operating in the negative ion mode. Validation studies with fortified egg samples for established method were performed. The result of method validation gave good efficiency, linearity, accuracy and precision. The correlation coefficients ($r^2$) of the calibration curves appeared to be higher than 0.99 in egg, indicating excellent linearity. LOD was ranged 0.09 to $0.17{\mu}g/kg$, and recoveries for most compounds were in the range of 55.7-69.8%. This method can be used to determine ${\mu}g/kg$ levels of glucocorticoids in eggs.

Residual Pesticide Analysis Method of Edible Oil via Heat Distillation Methods (가열증류법에 의한 식용유지의 잔류농약 분석법 개발)

  • Mi-Hui Son;Jae-Kwan Kim;Young-Seon Cho;Na-Eun Han;Byeong-Tae Kim;Myoung-Ki Park;Yong-Bae Park
    • Journal of Food Hygiene and Safety
    • /
    • v.38 no.3
    • /
    • pp.89-98
    • /
    • 2023
  • Currently, no guidelines exist regarding the maximum residues of pesticides in edible oil which is a processed food commonly consumed in Korea. This lack of guidelines hinders the evaluation of the safety of edible oil in terms of pesticide contamination. In this study, an analysis method based on heat distillation and GC-MS/MS was established by optimizing the extraction and purification procedure for 68 pesticides. Important variables in the thermal distillation procedure included heating temperature and time, and we found the nitrogen flow rate as a mobile phase and the type of dissolving solvent were not considerably affected. The determination coefficient (R2) of the residual pesticide was 0.99 or higher, and the quantitative limit (LOQ) was 0.01-0.02 mg/L. The average recovery rate (n=5) was 66.1-120.0% and the relative standard deviation was lower than ±10% when 68 pesticides were spiked at concentrations of 0.01-0.02, 0.1, and 0.5 mg/L. In addition, the within-laboratory precision was less than ±11%, meeting the Korea Food and Drug Safety Evaluation Institute's Guidelines on Standard Procedures for Preparing Food Testing Methods (2016). Therefore, the test method developed in this study can be used as a test method for managing the safety of the residual pesticide concentration in edible oil.

Neural Network-Based Prediction of Dynamic Properties (인공신경망을 활용한 동적 물성치 산정 연구)

  • Min, Dae-Hong;Kim, YoungSeok;Kim, Sewon;Choi, Hyun-Jun;Yoon, Hyung-Koo
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.12
    • /
    • pp.37-46
    • /
    • 2023
  • Dynamic soil properties are essential factors for predicting the detailed behavior of the ground. However, there are limitations to gathering soil samples and performing additional experiments. In this study, we used an artificial neural network (ANN) to predict dynamic soil properties based on static soil properties. The selected static soil properties were soil cohesion, internal friction angle, porosity, specific gravity, and uniaxial compressive strength, whereas the compressional and shear wave velocities were determined for the dynamic soil properties. The Levenberg-Marquardt and Bayesian regularization methods were used to enhance the reliability of the ANN results, and the reliability associated with each optimization method was compared. The accuracy of the ANN model was represented by the coefficient of determination, which was greater than 0.9 in the training and testing phases, indicating that the proposed ANN model exhibits high reliability. Further, the reliability of the output values was verified with new input data, and the results showed high accuracy.

State-Space Equation Model for Motion Analysis of Floating Structures Using System-Identification Methods (부유식 구조체 운동 해석을 위한 시스템 식별 방법을 이용한 상태공간방정식 모델)

  • Jun-Sik Seong;Wonsuk Park
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.37 no.2
    • /
    • pp.85-93
    • /
    • 2024
  • In this paper, we propose a method for establishing a state-space equation model for the motion analysis of floating structures subjected to wave loads, by applying system-identification techniques. Traditionally, the motion of floating structures has been analyzed in the time domain by integrating the Cummins equation over time, which utilizes a convolution integral term to account for the effects of the retardation function. State-space equation models have been studied as a way to efficiently solve floating-motion equations in the time domain. The proposed approach outlines a procedure to derive the target transfer function for the load-displacement input/output relationship in the frequency domain and subsequently determine the state-space equation that closely approximates it. To obtain the state-space equation, the method employs the N4SID system-identification method and an optimization approach that treats the coefficients of the numerator and denominator polynomials as design variables. To illustrate the effectiveness of the proposed method, we applied it to the analysis of a single-degree-of-freedom model and the motion of a six-degree-of-freedom barge. Our findings demonstrate that the presented state-space equation model aligns well with the existing analysis results in both the frequency and time domains. Notably, the method ensures computational accuracy in the time-domain analysis while significantly reducing the calculation time.

A study to find the operation conditions to minimize carbon footprint using a simulator(EQPS) (시뮬레이터(EQPS)를 이용한 탄소발자국 최소화 운전 방안에 대한 연구)

  • Jisoo Han;Jeseung Lee;Byonghi Lee
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.32 no.2
    • /
    • pp.37-48
    • /
    • 2024
  • Wastewater treatment plants (WWTPs) are obligated to reduce carbon emissions as a part of public sector greenhouse gas (GHG) emission reduction targets. However, Sewage Statistics(2022) shows that CO2 emissions per wastewater treatment volumes have decreased by only 3.03 % compared to 2020, which is far from enough to meet the Nationally Determined Contribution (NDC) targets. This study aimed to find operational conditions of biological reactors that minimize total carbon footprint (CFP). Total CFP considers both direct emissions from biological processes and indirect emissions from energy consumption. A study was conducted using a computer simulation program which is called as EQPS for a 4-stage BNR WWTP. The results showed that total CFP was reduced by 10.97% compared to the design condition when the mixed liquor recirculation (MLR) was set to 100 % of the influent flow. The N2O emission factor (EF) of the target WWTP was calculated to be 0.138-0.199 %, which is significantly lower than the IPCC default value of 1.6 %. This study proposes a method to minimize total CFP in WWTPs by optimizing biological reactor operation and emphasizes the need for further research on N2O emission reduction.