• Title/Summary/Keyword: 계면 물성

Search Result 599, Processing Time 0.024 seconds

Evaluation of Mechanical and Interfacial Properties between Glass Fiber and Epoxy Resin after NaCl Solution and Aging Treatments (염수 노화처리 일수에 따른 유리섬유 에폭시간의 기계적 및 계면 물성 변화 평가)

  • Shin, Pyeong-Su;Wang, Zuo-Jia;Kwon, Dong-Jun;Choi, Jin-Yeong;Lee, Sang-Il;Park, Joung-Man
    • Composites Research
    • /
    • v.28 no.1
    • /
    • pp.22-27
    • /
    • 2015
  • Although it is important to have high strength of each of fiber and matrix, interface between fiber and matrix is most important. If NaCl water penetrates the interface, that area will be weak. So experiment about increasing interfacial strength is in process. In this study, the change of properties by mechanical, interfacial and micromechanical tests was observed after NaCl and aging treatment. The changes in mechanical properties of glass fiber were investigated using single-fiber tensile test. Interfacial properties between glass fiber and epoxy resin were evaluated using nondestructive acoustic emission (AE) and micromechanical test applied to fatigue test. Through change of fatigue properties, relative interfacial properties were evaluate. In conclusion, glass fiber diameter decreased and the reduction of mechanical and interfacial was observed with NaCl solution and aging treatment.

Prediction and Calibration of Transverse Mechanical Properties of Unidirectional Composites with Random Fiber Arrangement Considering Interphase Effect (계면 특성을 고려한 무작위 섬유배치를 갖는 단방향 복합재료의 가로방향 기계적 물성 예측 및 보정)

  • Park, Shin-Moo;Kim, Do-Won;Jeong, Gyu;Lim, Jae Hyuk;Kim, Sun-Won
    • Composites Research
    • /
    • v.32 no.5
    • /
    • pp.270-278
    • /
    • 2019
  • In this study, the transverse mechanical properties of the unidirectional fiber reinforced composite modeled with fiber, matrix, and interphase is predicted with the representative volume elements and is calibrated by adjusting the properties and thickness of the interphase by referring to the test results. While the conventional representative volume elements modeled with fiber and matrix shows high predictive accuracy for the longitudinal mechanical properties, but it shows some deviations in the transverse mechanical properties. In order to compensate such gaps, the interphase region is employed, and its mechanical properties are adjusted to improve the prediction accuracy according to various elastic modulus, thickness, and strength parameters. As a result, the deviation of the transverse elastic modulus and strength is reduced significantly similar to the test results of the unidirectional composites with the accuracy of the longitudinal mechanical properties preserved.

Adhesive Properties of Emulsion PSA Polymerized Using Tween Series Nonionic Surfactants (Tween계 비이온 계면활성제를 이용하여 중합한 에멀션점착제의 접착물성)

  • Lim, Tae Kyun;Lee, Myung Cheon
    • Korean Chemical Engineering Research
    • /
    • v.52 no.3
    • /
    • pp.289-293
    • /
    • 2014
  • In making emulsion type pressure sensitive adhesive (PSA), environmentally friendly Tween series nonionic surfactants were used to find out the possibility of substituting the traditional nonyl-phenyl nonionic surfactant (NP-40) by comparing their adhesive properties. Results exhibited that the PSA used Tween series nonionic surfactants showed much better adhesive properties in peel strength and holding power than that used NP-40.

Adhesive Properties of Emulsion PSA for Various Nonionic Sorbitan Surfactants (솔비탄계 비이온계면활성제 종류에 따른 에멀션점착제의 점착물성)

  • Lim, Tae Kyun;Lee, Myung Cheon
    • Journal of Adhesion and Interface
    • /
    • v.13 no.4
    • /
    • pp.182-187
    • /
    • 2012
  • In making emulsion-type pressure sensitive adhesive (PSA), environmentally friendly sorbitan nonionic surfactants having various chemical structures were prepared and used to find out the possibility of substituting the traditional nonyl-phenyl nonionic surfactant (NPE40) by comparing their adhesive properties. Results exhibited that the PSA used NSR10-series and Tween 60 showed better adhesive properties in initial ball tack, peel strength and holding power than those of NPE40. The reason for this is their particular chemical structure and the proper ratio of hydrophobic groups to the ethylene oxide groups.

Fabrication of PP/Carbon Fiber Composites by Introducing Reactive Interphase and its Properties (반응성 고분자 계면상을 도입한 PP/탄소섬유 복합재료의 제조와 물성)

  • 김민영;김지홍;김원호;최영선;황병선
    • Polymer(Korea)
    • /
    • v.24 no.4
    • /
    • pp.556-563
    • /
    • 2000
  • In general, the development of thermoplastic composites has been confronted with difficult problems such as the weak bonding strength between fibers and matrix. However, now, such problems are being surmounted by the development of resins, the improvement of processes, and introduction of interphase. Especially, the introduction of interphase between fiber and matrix can help a dissipation of the impact energy and provide a good adhesion between fibers and matrix. In this study, polymeric interphase was introduced by electrodeposition, modified polypropylene was added to improve the weak bonding strength between interphase and polypropylene matrix. By evaluation of interlaminar shear strength and impact strength of the composites, it was found that composites with introduced composites showed higher mechanical properties than those of composites without interphase. Reactive polymers which have either anhydride or free acid functional group were used as interphase materials, and these polymers also behave as charge carrier in aqueous solution during the electrodeposition process. Weight gain on the carbon fibers was evaluated by changing process parameters such as concentration of solution, current density, and electrodeposition time.

  • PDF

Improvement of Mechanical and Interfacial Properties of Carbon Fiber/Epoxy Composites by Adding Nano SiC Fillers (나노 SiC 입자의 형상에 따른 탄소섬유 강화 에폭시 복합재료의 기계적 및 계면 물성 변화 관찰)

  • Kwon, Dong-Jun;Wang, Zuo-Jia;Kim, Je-Jun;Jang, Key-Wook;Park, Joung-Man
    • Journal of Adhesion and Interface
    • /
    • v.14 no.2
    • /
    • pp.75-81
    • /
    • 2013
  • Epoxy matrix based composites were fabricated by adding SiC nano fillers. The interfacial properties of composites were varied with different shapes of SiC nano fillers. To investigate the shape effects on the interfacial properties, beta and whisker type SiC nano fillers were used for this evaluation. The dispersion states of nano SiC-epoxy nanocomposites were evaluated by capacitance measurements. FE-SEM was used to observe the fracture surface of different structures of SiC-epoxy nanocomposites and to investigate for reinforcement effect. Interfacial properties between carbon fiber and SiC-epoxy nanocomposites were also evaluated by ILSS (interlaminar shear strength) and IFSS (interfacial shear strength) tests. The interfacial adhesion of beta type nanocomposites was better than whisker type.

Effect of Interface on the Properties of Cord-Rubber Composites (코드섬유-고무 복합재료의 물성치에 대한 계면의 영향)

  • Lim, Hyun-Woo;Kim, Jong-Kuk;Yum, Young-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.5
    • /
    • pp.583-588
    • /
    • 2010
  • The nonlinearity and high deformability of rubber make accurate analysis of the behavior of cord-rubber composites a challenging task. Some researchers have adopted the third phase between cord and rubber and have carried out three-phase modeling. However, it is difficult to determine the thickness and properties of the interface in cord-rubber composites. In this study, a two-dimensional finite-element method (2D FEM) is used to investigate the effective and normalized moduli of cord-rubber composites having interfaces of various thicknesses; this model takes into account the 2D generalized plane strain and a plane strain element. The neo-Hookean model is used for the properties of rubber, several interface properties are assumed and three loading directions are selected. It is found that the properties and thickness of the interface can affect the nonlinearity and the effective modulus of cord-rubber composites.

Interfacial Evaluation of Single Ramie and Kenaf Fibers/Epoxy Composites Using Micromechanical Technique (Micromechanical 시험법을 이용한 Kenaf 및 Ramie 섬유 강화 에폭시 복합재료의 계면물성 평가)

  • Park, Joung-Man;Tran, Quang Son;Jung, Jin-Gyu;Kim, Sung-Ju;Hwang, Byung-Sun
    • Journal of Adhesion and Interface
    • /
    • v.6 no.2
    • /
    • pp.13-20
    • /
    • 2005
  • Interfacial shear strength (IFSS) of environmentally friendly natural fiber reinforced polymer composites plays a very important role in controlling the overall mechanical performance. The IFSS of various Ramie and Kenaf fibers/epoxy composites was evaluated using the combination of micromechanical test and nondestructive acoustic emission (AE) to find out optimal conditions for desirable final performance. Dynamic contact angle was measured for Ramie and Kenaf fibers and correlated the wettability properties with interfacial adhesion. Mechanical properties of Ramie and Kenaf fibers were investigated using single-fiber tensile test and analyzed statistically by both uni-and bimodal Weibull distributions. An influence of clamping effect on a real elongation for both Ramie and Kenaf fibers were evaluated as well. Two different microfailure modes, axial debonding and fibril fracture coming from fiber bundles and single fiber composites (SFC) were observed under tension and compression.

  • PDF