Prediction and Calibration of Transverse Mechanical Properties of Unidirectional Composites with Random Fiber Arrangement Considering Interphase Effect |
Park, Shin-Moo
(Department of Mechanical Engineering, Jeonbuk National University)
Kim, Do-Won (Department of Mechanical Engineering, Jeonbuk National University) Jeong, Gyu (Department of Mechanical Engineering, Jeonbuk National University) Lim, Jae Hyuk (Department of Mechanical Engineering, Jeonbuk National University) Kim, Sun-Won (Satellite Bus Development Division, Korea Aerospace Research Institute) |
1 | Lee, W., "Half-dome Thermo-forming Tests of Thermoplastic Glass Fiber/PP Composites and FEM Simulations Based on Non-orthogonal Constitutive Models," Composites Research, Vol. 29, No. 5, 2016, pp. 236-242. DOI |
2 | Im, J.M., Kang, S.G., Shin, K.B., and Lee, S.W., "Study on Evaluation Method of Structural Integrity for Cone-Type Composite Lattice Structures with Hexagonal Cell," Composites Research, Vol. 31, No. 4, 2018, pp. 150-160. |
3 | Hinrichsen, E.L., Feder, J., and Jossang, T., "Geometry of Random Sequential Adsorption," Journal of Statistical Physics, Vol. 44, No. 5-6, 1986, pp. 793-827. DOI |
4 | Vaughan, T.J., and McCarthy, C.T., "A Combined Experimental-numerical Approach for Generating Statistically Equivalent Fibre Distributions for High Strength Laminated Composite Materials," Composites Science and Technology, Vol. 70, No. 2, 2010, pp. 291-297. DOI |
5 | Wang, W., Dai, Y., Zhang, C., Gao, X., and Zhao, M., "Micromechanical Modeling of Fiber-Reinforced Composites with Statistically Equivalent Random Fiber Distribution," Materials, Vol. 9, No. 8, 2016, pp. 624. DOI |
6 | Yang, L., Yan, Y., Ran, Z.G., and Liu, Y.J., "A New Method for Generating Random Fibre Distributions for Fibre Reinforced Composites," Composites Science and Technology, Vol. 76, 2013, pp. 14-20. DOI |
7 | Na, W.J., Lee, G.S., Sung, M.C., Han H.N., and Yu, W.R., "Prediction of the Tensile Strength of Unidirectional Carbon Fiber Composites Considering the Interfacial Shear Strength," Composite Structures, Vol. 168, 2017, pp. 92-103. DOI |
8 | Park, S.M., Lim, J.H., Seong, M.R., and Sohn, D.W., "Efficient Generator of Random Fiber Distribution with Diverse Volume Fractions by Random Fiber Removal," Composites Part B: Engineering, Vol. 167, 2019, pp. 302-316. DOI |
9 | Drzal, L., Interfaces and Interphases, ASM International, 2001. |
10 | Riano, L., Belec, L., Chailan, J.F., and Joliff, Y., "Effect of Interphase Region on the Elastic Behavior of Unidirectional Glass-fiber/epoxy Composites," Composite Structures, Vol. 198, 2018, pp. 109-116. DOI |
11 | Kaddour, A.S., and Hinton, M.J., "Input Data for Test Cases Used in Benchmarking Triaxial Failure Theories of Composites," Journal of Composite Materials, Vol. 46, No. 19-20, 2012, pp. 2295-2312. DOI |
12 | ABAQUS 6.14 DOCUMENTATION, Dassault Systemes Simulia Corp., Providence, RI, USA, 2014. |
13 | Jeong, G., Lim, J.H., Choi, C., and Kim, S.W., "A Virtual Experimental Approach to Evaluate Transverse Damage Behavior of a Unidirectional Composite Considering Noncircular Fiber Cross-sections," Composite Structures, Vol. 228, 2019, pp. 111-369. |
14 | Liu, Z., Moore, J.A., and Liu, W.K., "An Extended Micromechanics Method for Probing Interphase Properties in Polymer Nanocomposites," Journal of the Mechanics and Physics of Solids, Vol. 95, 2016, pp. 663-680. DOI |
15 | Wang, X.Q., Zhang, J.F., Wang, Z.Q., Zhou, S., and Sun, X.Y., "Effects of Interphase Properties in Unidirectional Fiber Reinforced Composite Materials," Materials & Design, Vol. 32, No. 6, 2011, pp. 3486-3492. DOI |