• Title/Summary/Keyword: 계면접착특성

Search Result 320, Processing Time 0.025 seconds

Studies on Adhesion Properties of Grafted EPDM Containing Carboxylic Acid Group (카르복시산을 포함하는 Grafted EPDM의 접착특성에 관한 연구)

  • Kim, Dongho;Yoon, Yoomi;Chung, Ildoo;Park, Chanyoung;Bae, Jongwoo;Oh, Sangtaek;Kim, Guni
    • Journal of Adhesion and Interface
    • /
    • v.13 no.1
    • /
    • pp.1-8
    • /
    • 2012
  • The effect of the grafting ratio on the mechanical property and adhesion property of the grafted EPDM modified with methacrylic acid (MA) was investigated. The storage modulus of MA-grafted EPDM was maintained higher than that of cross-linked EPDM vulcanizate by sulfur, but it was observed that the storage modulus was decreased at elevated temperature because of the weakened secondary bonding. When the functional group for hydrogen bonding was introduced in EPDM, it had excellent mechanical properties by the aggregate between grafted EPDM molecules and crystallinity of MA. The bonding strength between EPDM and other rubbers was very low because EPDM has nonpolar property and low molecular interaction to others. The bonding strength was increased as increasing grafting ratio and it was excellent enough to break the rubber during the peel test when the grafting ratio was more than 10%.

Studies on Adhesion Properties between Zinc-Coated Steel Cord and Adhesion Promoter-Containing Rubber Compound (아연 코팅된 스틸코드와 접착증진제가 적용된 고무 Compound와의 접착특성 연구)

  • Ko, Sang Min;Choi, Hee Seok;Son, Woo Jung;Kang, Sin Jung
    • Journal of Adhesion and Interface
    • /
    • v.15 no.2
    • /
    • pp.49-56
    • /
    • 2014
  • In this study, properties of adhesion between adhesion promoter-containing rubber compound and zinc coated steel cord was investigated. Cobalt salt, resorcinol formaldehyde resin (RF resin) and hexamethoxymethylmelamine (HMMM) were used to adhesion promoter. Since cobalt salts accelerate sulphidation rate of zinc at zinc coated steel cord surface, pullout force of rubber compound applying cobalt salts was increased compared to that of rubber compound without applying cobalt salts. Pullout force and rubber coverage of rubber compounds applying all adhesion promoters were superior because strong interlocking between rubber matrix increased modulus due to applying RF resin and HMMM and grown zinc sulfides at zinc coated steel cord surface.

Concentration Effect of Silane Coupling Agents with Chloropropyl End Group on the Interfacial Characteristics of Glass/Nylon 6 Composites (유리섬유/나일론 6 복합재료의 계면특성에 미치는 Chloropropyl 말단기를 가진 실란결합체 농도의 영향)

  • Cho, Donghwan;Yun, Suk Hyang;Bang, Dae-Suk;Kim, Junkyung;Lim, Soonho;Park, Min
    • Journal of Adhesion and Interface
    • /
    • v.5 no.1
    • /
    • pp.21-28
    • /
    • 2004
  • In this work, glass fiber/nylon 6 and woven glass fiber/nylon 6 composites have been fabricated using glass fiber reinforcements sized with 3-chloropropyltrimethoxysilane(CTMS) having a chloropropyl organo-functional group in the molecular chain end. The interfacial shear strength of glass fiber/nylon 6 composite was measured using a single fiber microbonding test and the interlaminar shear strength and the storage modulus of woven glass fabric/nylon 6 composites were measured using a short-warn shear test and a dynamic mechanical analysis, respectively, informing the effect of the concentration of CTMS on the properties. With increasing CTMS concentration, the interfacial properties of the composites were improved. The results on the interfacial shear strength, interlaminar shear strength, interlaminar failure pattern, and storage modulus with varying the CTMS concentration agree with each other.

  • PDF

Studies on Adhesion and Mechanical Properties of Casting Polyurethane Elastomer with Acid Groups (Acid Group이 도입된 Casting 폴리우레탄 탄성체의 접착 및 기계적 물성에 관한 연구)

  • Mok, Dong Youb;Shin, Hyun Deung;Kim, Dong Ho;Kim, Gu Ni;Moon, Hyung Suk;Kim, In-Soo
    • Journal of Adhesion and Interface
    • /
    • v.14 no.2
    • /
    • pp.68-74
    • /
    • 2013
  • We synthesized polyurethane elastomer containing acid groups. We measured the adhesion, grip, tensile strength and mechanical properties. Casting polyurethane elastomers were prepared with the contents of acid. The adhesive strength and the wet slip were increased. Also, the tensile strength and abrasion properties were increased. We measured the properties with different acid contents. Increasing the acid content, the mechanical properties were increased. But the mechanical properties were decreased above 0.20 wt% of acid content. The wet slip was increased and the contact angle was decreased as the acid content increased.

Analysis of Ultrasonic Resonance Signal in Multi-Layered Structure (다중접착구조물의 초음파 공진 신호 분석)

  • Kim, Dong-Ryun;Kim, Jae-Hoon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.4
    • /
    • pp.401-409
    • /
    • 2012
  • Ultrasonic testing are far superior to other nondestructive tests for detecting the disbond interface which occurred in adhesive interface. However, a solid rocket motor consisting of a steel case, rubber insulation, liner, and propellant poses many difficulties for analyzing ultrasonic waves because of the superposition of reflected waves and large differences in acoustic impedance of various materials. Therefore, ultrasonic tests for detecting the disbond interface in solid rocket motor have been applied in very limited areas between the steel case and rubber insulation using an automatic C-scan system. The existing ultrasonic test cannot detect the disbond interface between the liner and propellant of a solid rocket motor because most of the ultrasonic waves are absorbed in the rubber material which has low acoustic impedance. This problem could be overcome by analyzing the resonance frequency from the frequency spectrum using the ultrasonic resonance method. In this paper, a new technique to detect the disbond interface between the liner and propellant using ultrasonic resonance characteristics is discussed in detail.

Adhesive Properties of Epoxy Composite According to the Surface Treatment of Cu Substrate and Adhesion Promoter Content (구리기판의 표면처리 및 접착증진제 함량에 따른 에폭시 컴포지트의 접착특성)

  • Eun-jin Kim;Jung Soo Kim;Young-Wook Chang;Dong Hyun Kim
    • Journal of Adhesion and Interface
    • /
    • v.23 no.4
    • /
    • pp.108-115
    • /
    • 2022
  • In this study, we synthesized poly(itaconic acid-co-acrylamide) (IAcAAM) used as a novel polymer adhesion promoter to improve the adhesion strength of surface-treated Cu lead frames and epoxy composites. IAcAAM comprising itaconic acid, acrylamide was prepared through radical aqueous polymerization. The chemical structure and properties of IAcAAM was analyzed by FT-IR, 1H-NMR, GPC, and DSC. The surface of the copper lead frame was treated with high temperature, alkali, and UV ozone to reduce the water contact angle and increase the surface energy. The adhesive strength of Cu lead frame and epoxy composite increased with the decrease of contact angle. The adhesive strength of Cu lead frame/epoxy composite increased with the addition of IAcAAM in epoxy composite. As silica content increased, the adhesive strength of Cu lead frame and epoxy composite tended to slightly decrease.

Recent Research Trend in Synthesis of Two-Dimensional Graphene through Interface Engineering (계면 제어를 통한 2차원 그래핀 성장의 최근 연구 동향)

  • Lee, Seung Goo;Lee, Eunho
    • Journal of Adhesion and Interface
    • /
    • v.22 no.3
    • /
    • pp.79-84
    • /
    • 2021
  • Graphene has been received a lot of attention as essential parts of future electronic and energy devices. Because of its extraordinary properties contributed from the atomic layer, the interface and surface engineering of graphene are promising approaches for realizing 2D materials-based high-performance devices. Herein, we summarize and introduce recent research trends of the synthesis of graphene through interface engineering for high-performance electronic and energy device applications, and then discuss the challenges and opportunities for achieving high-performance devices in next-generation electronics.

Preparation and Properties of Modified Polyethylenes: 2. Physical and Heat-Seal Properties of Films (변성 폴리에틸렌의 제조 및 물성 : 2. 필름의 물성 및 열접착 특성)

  • Lee, Jae Heung;Lee, Sang-Hun
    • Journal of Adhesion and Interface
    • /
    • v.3 no.3
    • /
    • pp.15-21
    • /
    • 2002
  • The modified polyethylene(m-PE) films were prepared from aqueous dispersions which were synthesized by reacting poly(ethylene-co-methylacrylate) with aqueous KOH and ammonia solution to attach -COOK, $CONH_2$, and COOH as pendent groups in the polyethylene backbones. Thermal, tensile and heat-seal properties were measured to investigate the effect of the pendent groups. Endothermic peaks on DSC curves were affected by the thermal history of the samples and a melting peak was observed at around $86^{\circ}C$ on the second heating curve while three melting peaks were shown on the first heating curve. A minimum value of tensile strength was shown at 70 mole% of COOK based on pendent groups. Tensile modulus increased with increasing the amide content in pendent groups. The m-PE films were heat-sealed at lower temperature than LDPE films and showed a minimum heat seal strength at around 70 mole% COOK content in pendent groups.

  • PDF

Thermal Properties and Sound-Damping Characteristics of Polyurethane Nanocomposite Foams (폴리우레탄 나노복합 발포체의 열적 성질 및 흡음 특성)

  • Lee, Jun Mo;Ha, Chang Sik
    • Journal of Adhesion and Interface
    • /
    • v.11 no.1
    • /
    • pp.3-8
    • /
    • 2010
  • Thermal properties, flame retardant property, and sound-damping properties of polyurethane (PU) nanocomposite foams prepared with oligomeric 1,2-propanediol isobutyl polyhedral silsesquioxane (POSS) were investigated. It was found that the PU nanocomposite foams showed good sound-damping performances comparing to the PU foams without POSS.

Interfacial Durability and Acoustic Properties of Transparent xGnP/PVDF/xGnP Graphite Composites Film for Acoustic Actuator (음향 작동기를 위한 투명한 xGnP/PVDF/xGnP 그래핀 복합재료 필름의 계면 내구성 및 음향 특성)

  • Gu, Ga-Young;Wang, Zuo-Jia;Kwon, Dong-Jun;Park, Joung-Man
    • Composites Research
    • /
    • v.25 no.3
    • /
    • pp.70-75
    • /
    • 2012
  • Interfacial durability and electrical properties of CNT, ITO or xGnP coated PVDF nanocomposites were investigated for acoustic actuator applications. The xGnP coated PVDF nanocomposite exhibited better electrical conductivity than CNT and ITO case due to the unique electrical property of xGnP, and this nanocomposite also showed good sound characteristics. Interfacial adhesion durability between either neat CNT or plasma treated CNT and plasma treated PVDF were measured by static contact angle, surface energy, work of adhesion, and spreading coefficient tests. The optimum acoustic actuation performance of xGnP coated PVDF nanocomposite was measured using sound level meter with changing radius of curvature and coating conditions. As compared to CNT and ITO, the xGnP was known as more appropriate acoustic actuator due to the characteristic electrical property. It is the most appropriate condition when the radius of curvature is 15 degree. Although sound characteristics were different with various coating thicknesses, it is possible to manufacture transparent actuator with good sound quality.