Browse > Article
http://dx.doi.org/10.17702/jai.2021.22.3.79

Recent Research Trend in Synthesis of Two-Dimensional Graphene through Interface Engineering  

Lee, Seung Goo (Department of Chemistry, University of Ulsan)
Lee, Eunho (Department of Chemical Engineering, Kumoh National Institute of Technology)
Publication Information
Journal of Adhesion and Interface / v.22, no.3, 2021 , pp. 79-84 More about this Journal
Abstract
Graphene has been received a lot of attention as essential parts of future electronic and energy devices. Because of its extraordinary properties contributed from the atomic layer, the interface and surface engineering of graphene are promising approaches for realizing 2D materials-based high-performance devices. Herein, we summarize and introduce recent research trends of the synthesis of graphene through interface engineering for high-performance electronic and energy device applications, and then discuss the challenges and opportunities for achieving high-performance devices in next-generation electronics.
Keywords
Graphene; Low-dimensional materials; Interface; Direct growth; Chemical vapor deposition;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Z. Sun, Z. Yan, J. Yao, E. Beitler, Y. Zhu, J.M. Tour, Nature, 468, 549 (2010).   DOI
2 J. Mischke, J. Pennings, E. Weisenseel, P. Kerger, M. Rohwerder, W. Mertin, G. Bacher, 2D Materials, 7, 035019 (2020).   DOI
3 Y.J. Kim, S.J. Kim, M.H. Jung, K.Y. Choi, S. Bae, S.K. Lee, Y. Lee, D. Shin, B. Lee, H. Shin, M. Choi, K. Park, J.H. Ahn, B.H. Hong, Nanotechnology, 23, 344016 (2012).   DOI
4 H.H. Kim, J.W. Yang, S.B. Jo, B. Kang, S.K. Lee, H. Bong, G . Lee, K.S. Kim, K. Cho, ACS Nano, 7, 1155 (2013).   DOI
5 J. Kwak, J.H. Chu, J.K. Choi, S.D. Park, H. Go, S.Y. Kim, K. Park, S.D. Kim, Y.W. Kim, E. Yoon, S. Kodambaka, S.Y. Kwon, Nature Communications, 3, (2012).
6 J.H. Chen, C. Jang, S. Adam, M.S. Fuhrer, E.D. Williams, M. Ishigami, Nature Physics, 4, 377 (2008).   DOI
7 I.V.G ., A.A.F. K. S. Novoselov, A. K. G eim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, Science, 306, 666 (2004).   DOI
8 R.R. Nair, P. Blake, A.N. Grigorenko, K.S. Novoselov, T.J. Booth, T. Stauber, N.M.R. Peres, A.K. Geim, Science, 320, 1308 (2008).   DOI
9 C. Lee, X. Wei, J.W. Kysar, J. Hone, Science, 321, 385 (2008).   DOI
10 K. Noveoselv, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I. Grigorieva, S. Dubonos, A.A. Firsov, Nature, 438, 197 (2015).   DOI
11 K. v. Emtsev, A. Bostwick, K. Horn, J. Jobst, G.L. Kellogg, L. Ley, J.L. McChesney, T. Ohta, S.A. Reshanov, J. Rohrl, E. Rotenberg, A.K. Schmid, D. Waldmann, H.B. Weber, T. Seyller, Nature Materials, 8, 203 (2009).   DOI
12 X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S.K. Banerjee, L. Colombo, R.S. Ruoff, Science, 324, 1312 (2009).   DOI
13 C. Film, H. Ago, Y. Ito, N. Mizuta, K. Yoshida, B. Hu, C.M. Orofeo, ACS Nano, 4, 7407 (2010).   DOI
14 H.H. Kim, Y. Chung, E. Lee, S.K. Lee, K. Cho, Advanced Materials, 26, 3213 (2014).   DOI
15 A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S.K. Saha, U. v. Waghmare, K.S. Novoselov, H.R. Krishnamurthy, A.K. Geim, A.C. Ferrari, A.K. Sood, Nature Nanotechnology, 3, 210 (2008).   DOI
16 Z. Liu, L. Song, S. Zhao, J. Huang, L. Ma, J. Zhang, J. Lou, P.M. Ajayan, Nano Letters, 11, 2032 (2011).   DOI
17 J.S. Speck, Journal of Applied Physics, 67, 495 (1990).   DOI
18 E. Lee, S.G. Lee, H.C. Lee, M. Jo, M.S. Yoo, K. Cho, Advanced Materials, 30, 1 (2018).
19 J. C. Meyer, A. K. Geim, M. I. Katsnelson, K. S. Novoselov, T. J. Booth, S. Roth, Nature, 446, 60 (2007).   DOI
20 X. Li, W. Cai, L. Colombo, R.S. Ruoff, Nano Letters, 9, 4268 (2009).   DOI
21 M. Marchena, D. Janner, T.L. Chen, V. Finazzi, V. Pruneri, Optical Materials Express, 6, 2487 (2016).   DOI
22 H.K. Seo, K. Kim, S.Y. Min, Y. Lee, C.E. Park, R. Raj, T.W. Lee, 2D Materials, 4, 024001 (2017).   DOI
23 H. Mehdipour, K. Ostrikov, ACS Nano, 6, 10276 (2012).   DOI
24 S. Park, R.S. Ruoff, Chemical methods for the production of graphenes, Nature Nanotechnology, 4, 217 (2009).   DOI
25 Q. Yu, J. Lian, S. Siriponglert, H. Li, Y.P. Chen, S.S. Pei, Applied Physics Letters, 93, 1 (2008).
26 H.H. Kim, S.K. Lee, S.G. Lee, E. Lee, K. Cho, Advanced Functional Materials, 26, 2070 (2016).   DOI
27 C.Y. Su, A.Y. Lu, C.Y. Wu, Y. te Li, K.K. Liu, W. Zhang, S.Y. Lin, Z.Y. Juang, Y.L. Zhong, F.R. Chen, L.J. Li, Nano Letters, 11, 3612 (2011).   DOI
28 D.H. Jung, C. Kang, M. Kim, H. Cheong, H. Lee, J.S. Lee, The Journal of Physical Chemistry C, 118, 3574 (2014).   DOI
29 S. Tang, H. Wang, H.S. Wang, Q. Sun, X. Zhang, C. Cong, H. Xie, X. Liu, X. Zhou, F. Huang, X. Chen, T. Yu, F. Ding, X. Xie, M. Jiang, Nature Communications, 6, 1 (2015).
30 W. Zhang, P. Wu, Z. Li, J. Yang, Journal of Physical Chemistry C, 115, 17782 (2011).   DOI
31 M. Qi, Z. Ren, Y. Jiao, Y. Zhou, X. Xu, W. Li, J. Li, X. Zheng, J. Bai, Journal of Physical Chemistry C, 117, 14348 (2013).   DOI
32 E. Lee, S.G. Lee, K. Cho, Chemistry of Materials, 31, 4451 (2019).   DOI
33 E. Lee, S.G. Lee, W.H. Lee, H.C. Lee, N.N. Nguyen, M.S. Yoo, K. Cho, Chemistry of Materials, 32, 4544 (2020).   DOI
34 M.P. Levendorf, C.S. Ruiz-Vargas, S. Garg, J. Park, Nano Letters, 9, 4479 (2009).   DOI
35 A. Ismach, C. Druzgalski, S. Penwell, A. Schwartzberg, M. Zheng, A. Javey, J. Bokor, Y. Zhang, Nano Letters, 10, 1542 (2010).   DOI