• Title/Summary/Keyword: 계면물성

Search Result 600, Processing Time 0.019 seconds

Preparation and Properties of UV Curable Phlorogulcinol Based Acrylate for PET Film (PET 필름용 UV 경화 플로로글루시놀계 아크릴레이트 제조 및 물성)

  • Choi, Jeon-Mo;Lee, Eun-Young;Kim, Sangyong;Cho, Jin-Ku;Kim, Baekjin;Lee, Sang-Hyeup;Kim, Hyun Joong
    • Journal of Adhesion and Interface
    • /
    • v.11 no.2
    • /
    • pp.50-56
    • /
    • 2010
  • Polyethyleneterephthalate (PET) film is widely used in various industrial fields such as mobile phone, display pannel, notebook etc. Recently PET film attached on indium tin oxide (ITO) surface has a role of high pencil hardness, high refractive index etc. So we synthesized two types of multi-functional monomer which are epoxy modifed acrylate and unmodified acrylate type using recyclable resource like phloroglucinol, derived from trinitrotoluene. We studied the effect of multi-functional monomer's chemical structure on the various properties such as refractive index, optical transmittance, and pencil hardness. We characterized synthesized multi-functional monomer by qualitative analysis through H NMR. We observed that pencil hardness of 1,3,5-triepoxide benzene and 1,3,5-triacrylate benzene they have the range of 2~3 H at high UV dosage of 300 mW. Refractive index appeared the value of 1.54~1.57. Transmittance of all multi-functional monomers has more than 93%.

Curing behavior of Photo-Curable Materials by Photo-Shrinkage Test (광원 경화형 소재의 수축률평가를 통한 광경화 거동 평가)

  • Park, Ji-Won;Bae, Kyung-Yul;Kim, Pan-Seok;Lim, Dong-Hyuk;Kim, Hyun-Joong;Cho, Jin-Ku;Kim, Baek-Jin;Lee, Sang-Hyeup
    • Journal of Adhesion and Interface
    • /
    • v.11 no.2
    • /
    • pp.57-62
    • /
    • 2010
  • Photo-curable material can be crosslinked among molecules by light source such as UV and visible light materials. Material properties are controlled by crosslink reaction. Shrinkage is occured during the curing reaction of material structure. Phenomenon of shrinkage stress occurs inside the product and reduce the stability of the product causes problems. Heat shrink the evaluation of the phenomenon has been formalized. But the evaluation of photo shrink is not enough. In this experiment, real-time contract with shrinkage tester phenomena and analysis degree of shrinkage of the material differences. According to the research, experimental results and theoretical analysis of the results were big differences. Shrinkage, especially for a number of different functional groups that were very different theory. These differences are occurred by the molecular structure different and not enough reaction.

Enhanced Properties of Epoxy Molding Compound by Plasma Polymerization Coating of Silica (실리카의 플라즈마 중합 코팅에 의한 에폭시 봉지재의 물성 향상 연구)

  • Roh, J.H.;Lee, J.H.;Yoon, T.H.
    • Journal of Adhesion and Interface
    • /
    • v.2 no.2
    • /
    • pp.1-10
    • /
    • 2001
  • Silica for Epoxy Molding Compound (EMC) was coated via plasma-polymerization with RF plasma (13.56 MHz) as a function of treatment time, power and pressure. 1,3-diaminopropane, allylamine, pyrrole, 1,2-epoxy-5-hexene, allylmercaptan or allylalcohol were utilized for plasma polymerization coating and adhesion of coated silica was evaluated by measuring flexural strength. CTE and water absorption of EMC were also measured, and fracture surface of flexural specimen was analyzed by SEM in order to elucidate the failure mode. The plasma polymer coated silica was analyzed by FT-IR and reactivity of plasma polymer coating with epoxy resin was evaluated with DSC in order to investigate the adhesion mechanism. The EMC prepared from the silica coated with 1,3-diaminopropane or allylamine exhibited high flexural strength, low CTE, and low water absorption compared with the control sample, and also exhibited 100% cohesive failure mode. These results can be attributed to the chemical reaction between the functional groups in the plasma polymer coating and epoxy resin, and also consistent with the results from FT-IR and DSC analysis.

  • PDF

Preparation and Characteristics of Polymer Additives for Functional Instant Adhesives (기능성 순간접착제용 중합체 첨가제의 제조 및 특성)

  • Ihm, H.J.;Ahn, K.D.;Kim, S.B.;Kim, E.Y.;Han, D.K.
    • Journal of Adhesion and Interface
    • /
    • v.2 no.3
    • /
    • pp.25-32
    • /
    • 2001
  • Ethyl cyanoacrylate (ECA) is used as an instant adhesive, and it can be readily polymerized by moisture in air without any initiator and applied for industrial products and ohome use. However, pure ECA monomer is low-viscosity liquid at room temperature that flows into substrate surface. To thicken the instant adhesive, poly(methyl methacylate)(PMMA) is often added in it commercially. Another disadvantage of instant adhesive polymer is its brittleness In this study, functional polymers including PMMA for an additive of ECA were prepared to increase viscosity of the monomer and flexibility of the adhesive atthe same time The additives, P(MMA-VAc-EVE), were synthesized by radical copolymerization of MMA with VAc and EVE having low glass transition temperature (Tg). The additives were added to ECA to get functional instant adhesives. The chemical structures of the additives and ECA polymers were confirmed by $^1H$ NMR and FTIR, and their physical and mechanical properites were also evaluated. The Tg of the obtained additives decreased with increasing the content of VAc or VAc-EVE, indicating more improved flexibility. In addition, functional instant adhesive containing the additives showed higher bonding strength than that of the existing one.

  • PDF

Adhesion Performance of UV-curable Debonding Acrylic PSAs with Different Thickness in Thin Si-wafer Manufacture Process (박막 실리콘 웨이퍼용 UV 경화형 Debonding 아크릴 점착제의 두께별 접착 물성)

  • Lee, Seung-Woo;Park, Ji-Won;Lee, Suk-Ho;Lee, Yong-Ju;Bae, Kyung-Rul;Kim, Hyun-Joong;Kim, Kyoung-Mahn;Kim, Hyung-Il;Ryu, Jong-Min
    • Journal of Adhesion and Interface
    • /
    • v.11 no.3
    • /
    • pp.120-125
    • /
    • 2010
  • UV-curable acrylic Pressure-sensitive adhesives (Acrylic PSAs) are used in many different parts in the world. A wafer manufacture process which is based on semiconductor industry is one thing. We have used acrylic PSAs whose thickness is different from $20{\mu}m$ to $30{\mu}m$ in wafer manufacture process so far. But as wafers become more thinner, acrylic PSAs are supposed to satisfy the requirements such as proper adhesion performance. The main purpose of this research is studying proper adhesion performance and UV-curing behavior of UV-curable acrylic PSAs with very thin thickness and then determining optimized conditions to raise the efficiency of thin wafer production. Acrylic PSAs contain 2-Ethylhexyl Acrylate (2-EHA), Acrylic Acid (AA) and Butyl Acrylate (BA). Ethyl acetate (EtAc) is used as solvent. The acrylic PSAs are obtained using solvent polymerization. Thickness of UV-curable acrylic PSAs is different from $10{\sim}30{\mu}m$. By peel strength and probe tack, adhesion performance and UV curing behavior of acrylic PSA are concerned.

The Thermal and Mechanical Properties of Epoxy Composites Including Boron Carbide Surface Treated with Iron Oxide and Tungsten (철산화물과 텅스텐으로 표면 처리된 보론카바이드를 포함하는 에폭시 조성물의 열적·기계적 물성)

  • Kim, Taehee;Lee, Wonjoo;Seo, Bongkuk;Lim, Choong-Sun
    • Journal of Adhesion and Interface
    • /
    • v.19 no.3
    • /
    • pp.113-117
    • /
    • 2018
  • Boron carbide is lower in hardness than diamond or boron nitride but has a hardness of more than 30 GPa and is used for manufacturing tank armors and ammo shells due to its high hardness. It is also used as a neutron absorber due to its ability to absorb neutrons, which is increasing its use in nuclear power projects. Neutrons have no interaction with electrons and are known to pass through the material without interactions. Along with boron carbide, the atoms with high interaction with neutrons are hydrogen, and high hydrogen concentration polyesters and epoxy polymers including boron are used as materials for manufacturing products for nuclear power generation waste. In this paper, the surface of boron carbide is treated with iron oxide and tungsten to improve interaction between modified boron carbide and epoxy polymer. XRD and XPS were used to confirm that iron oxide and tungsten are well attached on the surface of boron carbide, respectively. The mechanical strength of the surface treated boron carbide was measured by a universal testing machine (UTM) and the dynamic characteristics of the cured product were observed by using a dynamic analyzer (DMA).

Study on the Demand Characteristics of Epoxy Resins Applied to the Restoration of Ceramics (도자기 복원에 사용되는 에폭시계 고분자수지의 요구 특성 연구)

  • Nam, Byeongjik;Jeong, Seri;Jang, Sungyoon
    • Journal of Adhesion and Interface
    • /
    • v.13 no.4
    • /
    • pp.171-181
    • /
    • 2012
  • The demand characteristics of the conventional 12 kinds of epoxy resins which have been used for restoration of the ceramic relics were investigated to provide standards of the effective materials in this study. The result of durability analysis showed that a liquid type is more effective in ceramic relics (low damage, high strength), and a paste type is more effective in earthenware relics (high damage, low strength). The result of workability analysis appears that the liquid type is higher than the paste type, and a slow curing type is higher than a fast curing type in surface hardness. Therefore, in the case of the liquid type which is hard to reprocess due to high surface hardness, it is necessary to conduct a study on improving physical properties by adding filler. The result of the gloss analysis on epoxy resins showed that the liquid type (colorless) has higher gloss than the paste type, and the slow curing type has higher gloss than the fast curing type in liquid types. CDK-520A/520B and Araldite SV 427-2/HV 427-1 showed the most similar gloss to $700^{\circ}C$ earthenware, Devcon 5 minute, EPO-TEK 301-2, and Quik Wood showed the most similar gloss to celadon and whiteware, Quik Wood, EPO-TEK 301-2, and Devcon 5 minute showed the most similar gloss to buncheongware. It is necessary for conservator to decide the range of the restoration surface by predicting the increase and decrease of the restoration surface because most of the epoxy resins caused the volume change in curing process.

Automotive Pre-primed Coatings with Automotive Structural Adhesive for Non-weldable Binding Process (자동차 구조용 접착제를 이용한 자동차용 Pre-primed 도료의 비용접식 접합공정 적용)

  • Moon, Je-Ik;Lee, Yong-Hee;Kim, Hyun-Joong;Noh, Seung Man;Nam, Joon Hyun;Kim, Min-Su;Kim, Jun-Ki;Kim, Jong-Hoon
    • Journal of Adhesion and Interface
    • /
    • v.12 no.3
    • /
    • pp.99-104
    • /
    • 2011
  • Currently, automotive pre-primed coatings has been developed to overcome environmental regulations and to reduce manufacturing cost in automotive industry. By these reasons, an automotive pre-primed system has been investigated to remove the wash and pre-treatment process using a roll coating application. It is required to develop non-weldable pre-primed system for automotive structural adhesives, because pre-primed sheet coated with organic compounds is hard to be assembled by welding process. Primer 1 (polyester type) and primer 2 (urethane type) were designed to satisfy flexibility and formability for non-weldable pre-primed system. According to the results of physical property test of the primers, adhesion test such as single-lap shear test and T-peel test, primer 1 (polyester type) had better physical properties such as pencil hardness, solvent resistance, flexibility and adhesion with automotive adhesive than that of primer 2 (polyurethane type). In addition, the possibility of the non-weldable pre-primed system was applicable to automotive assembly process in place of welding process.

Glass Fiber Composite Material with Polyurethane Toughener in Unsaturated Polyester Resin (UPR) (불포화 폴리에스터 (UPR)에 폴리우레탄을 첨가하여 강인성을 부여한 유리섬유 복합소재)

  • Baek, Chang Wan;Jang, Tae Woo;Kim, Taehee;Kim, Hye Jin;Kim, Hyeon-Gook;Kim, Changyoon;Seo, Bongkuk;Lim, Choong-Sun
    • Journal of Adhesion and Interface
    • /
    • v.22 no.2
    • /
    • pp.63-68
    • /
    • 2021
  • Unsaturated Polyester Resin (UPR) is in general used as a resin to prepare for composite materials with reinforcing materials such as glass fibers. UPR, a thermosetting resin, is used in industry to prepare for sheet molding compound (SMC) molding prepreg that has excellent productivity and is advantageous for mass production among various molding methods of composite materials. The fiber-reinforced composite material using UPR as a matrix material is light and has the advantage of excellent physical properties, but it is weak against impact and is fragile. Four types of polyurethane were synthesized and added to UPR resin to overcome the shortcomings.

Preparation of Hydrophobic Coating Layers Using Organic-Inorganic Hybrid Compounds Through Particle-to-Binder Process (유-무기 하이브리드 화합물과 Particle-Binder 공정을 이용한 소수성 코팅막 제조)

  • Hwang, Seung-Hee;Kim, Hyo-Won;Kim, Juyoung
    • Journal of Adhesion and Interface
    • /
    • v.21 no.4
    • /
    • pp.143-155
    • /
    • 2020
  • Hydrophobic Organic-Inorganic (O-I) hybrid materials prepared by sol-gel process have been widely used at functional coating fields such as coatings for anti-corrosion, anti-icing, self-cleaning, anti-reflection. The key point for fabricating hydrophobic surface is to optimize the surface energy and roughness of the coating films. There are typical processes to control the surface energy and roughness which are 'In situ fabricating', 'Pre-fluorinating/Post-roughening', 'Pre-roughening/ Post-fluorinating'. In this study, particle-binder process was used for in-situ fabrication of hydrophobic coating films. Various O-I hybrid compounds prepared using several kinds of alkoxysilane compounds were used as a binder for silica nanoparticles at particle-binder process. To study effect of fluorine content and weight ratio of particle : binder on the hydrophobicity and surface morphology, Hydrophobic coating films were prepared onto glass substrate at various content of fluorine content of O-I hybrid binder and weight ratio of particle : binder. The coating films prepared using O-I hybrid binder (GPTi-HF10) having 10 wt% of fluorine content showed the highes water contact angle (107.52±1.6°). The coating films prepared at 1:3 weight ratio of GPTi-HF10 : silica nanoparticle exhibited the highest water contact angle (130.84±1.99°).