• Title/Summary/Keyword: 계면경계

Search Result 161, Processing Time 0.025 seconds

Monitoring of interface between wafer and thin film using digital hologram (디지털홀로그램을 이용한 웨이퍼와 박막간의 경계면 모니터링)

  • Seo, Jun-Hyeon;Kim, Byeong-Hwan
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2014.11a
    • /
    • pp.230-230
    • /
    • 2014
  • 디지털 홀로그램 이미징 장치를 이용하여 박막과 웨이퍼 간의 두께 및 하전입자의 분포를 모니터링하는 센서의 성능을 보고한다. 이 센서는 웨이퍼와 SiN 박막 간의 경계를 구분하였으며, 경계에서의 하전입자의 분포의 분석도 가능함을 보였다. 이 센서는 다양한 종류의 계면 내지 박막 내부의 하전입자의 분포의 측정을 가능하게 하며, 또한 두께 변이의 실시간 측정도 가능하게 하여 향후 대량 생산현장에서의 광범위한 응용이 예상된다.

  • PDF

Analysis of Singular Stresses at the Bonding Interface of Semiconductor Chip Subjected to Shear Loading (전단하중하의 반도체 칩 접착계면의 특이응력 해석)

  • 이상순
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.7 no.4
    • /
    • pp.31-35
    • /
    • 2000
  • The stress state developed in a thin adhesive layer bonded between the semiconductor chip and the leadframe and subjected to a shear loading is investigated. The boundary element method (BEM) is employed to investigate the behavior of interface stresses. Within the context of a linear elastic theory, a stress singularity of type $\gamma^{\lambda=1}$(0<1<1) exists at the point where the interface between one of the rigid adherends and the adhesive layer intersects the free surface. Such singularity might lead to edge crack or delamination.

  • PDF

Manufacturing and Application of Natural Surfactants for Cosmetics (화장품용 천연계면활성제의 제조 및 이용 최신기술)

  • Kim, Hyung-Won
    • Journal of Adhesion and Interface
    • /
    • v.14 no.4
    • /
    • pp.197-211
    • /
    • 2013
  • Surfactants which have ability to decrease surface tension through surface activation between the interfaces are used as essential major raw materials for detergents and cosmetics. Typical synthetic detergents such as EO (ethylene oxide), LAB (linear alkylbenzene) are made from chemical surfactant derived from petrochemicals, therefore, they are responsible for major environment contaminations and ecosystem destruction, especially of rivers and also cause atopic dermatitis through strong skin stimulus of these small molecular's powerful permeability and lead to cancers if they get into organs through capillary. Now worldwide interest is increasing to develop new natural surfactants and biosurfactants as ecological, biodegradabl, harmless and multi-functional new amphiphillic materials which replace these synthetic surfactants.

A Study on the Boundary Layer Thickness at a Liquid-Vapor Interface (기액계면의 경계층 두께에 관한 연구)

  • Choi, Soon-Ho;Song, Chi-Sung;Choi, Hyun-Kyu;Lee, Jung-Hye;Kim, Kyung-Kun
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1086-1091
    • /
    • 2004
  • The boundary layer is a very important characteristic of a liquid-vapor interface since it governs the heat and mass transfer phenomena across an interface. However, the thickness of a boundary layer is generally micro- or nano-sized, which requires highly accurate measurement devices and, consequently, costs the related experiments very high and time-consuming. Due to these size dependent limitations, the experiments related with a nano-scaled size have suffered from the errors and the reliability of the obtained data. This study is performed to grasp the characteristics of a liquid-vapor interface, by using a molecular dynamics method. The simulation results were compared with other studies if possible. Although other studies reported that there existed a temperature discontinuity over an interface when the system was reduced to micro- or nano-sized, we confirmed that there was no such a temperature discontinuity.

  • PDF

Boundary Element Evaluation of Stress Intensity Factor for Interface Crack in Elastic and Viscoelastic Composite Materials (경계요소법에 의한 탄성-점탄성 복합구조체의 계면균열 해석)

  • 이상순;김정규;황종근
    • Computational Structural Engineering
    • /
    • v.9 no.1
    • /
    • pp.85-91
    • /
    • 1996
  • The focus of the present work is on the computation of the stress intensity factor for the crack at the elastic-viscoelastic bimaterial interface. First, the stress intensity factor for an interface crack in dissimilar elastic and viscoelastic materials is dervied by applying the correspondence principle to associated elastic expression. Then the time-domain boundary element analysis is performed to calculate the stress intensity factor. Numerical results show that the proposed method is very useful for the analysis of the interface crack in elastic and viscoelastic materials.

  • PDF

Thermal Analysis Considering Liquid Metal Flow in Direct Rolling (직접압연에서 용강의 유동을 고력한 열전달 해석)

  • 이상동;김영도;강충길
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.6
    • /
    • pp.1082-1091
    • /
    • 1989
  • 본 논문에서는 응고계면을 기준으로 하여 액상역, 고상역 및 로울등을 각각 계산 가능한 영역으로 좌표변환하는 경계공정법을 사용하여 로울두께 방향의 온도분 포와 고상역과 액상역의 속도 분포를 고려한 2차원 응고해석을 하여 모델재료를 이용 한 실험결과와 비교 검토하여 이론해석의 타당성을 검정한다. 그리고 열전도율이 연 강보다 적어 박판제조가 어려운 재료인 스테인리스강을 용탕으로부터 직접 생산하기 위한 압연조건을 정량적으로 제시하며, 압연로울의 냉각특성을 밝힌다.

Study on the Stress Singularity of Interface Crack by using Boundary Element Method (경계요소법을 이용한 계면균열의 응력특이성에 관한 고찰)

  • Cho, Chong-Du;Kwahk, Si-Young
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.4 s.97
    • /
    • pp.197-204
    • /
    • 1999
  • The boundary element method was used for studying singularities of an interface crack with contact zones. The iterative procedure is applied to estimate the contact zone size. Because the contact zone size was extremely small in a tension field, a large number of Gaussian points were used for numerical integration of the Kernels. Stress extrapolation method and J-integral were used ofr determining stress intensity factors. When the interface crack was assumed to have opened tips, oscillatory singularities appear near the tips of the interface crack. But the interface crack with contact zone which Comninou suggested had no oscillatory behavior. The contact zone size under shear loading was much larger than that under tensile. The stress intensity factors computed by stress extrapolation method were close to those of Comninou's solution. And the stress intensity factor evaluated by J-integral was similar to that by stress extrapolation method.

  • PDF

The study of data transfer method non-matching meshes interface using common-refinement method for fluid-structure interface (유체-구조 연성 해석을 위한 common-refinement 기반 불일치 격자 경계면에서의 정보 전달 기법 연구)

  • Han, Sangho;Kim, Donghyun;Lee, Changsoo;Kim, Chongam
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.3
    • /
    • pp.191-198
    • /
    • 2014
  • During multi-physics or multi-phase simulations accompanying fluid- structure- thermal interaction, data transfer problems always arise along non- matching interfaces caused by different computational meshes for each physical domain. Common- refinement scheme, among many available methods, is attractive since it is known to yield conservative and accurate data transfer for non- matching interface cases. This is particularly important in simulating compressible unsteady fluid- structure- thermal interaction inside solid propellant rockets, where grid size along solid- fluid interfaces is substantially different. From this perspective, we examine performances of common- refinement- based data transfer scheme between structured quadrilateral (structure part) and unstructured triangular (fluid part) meshes by comparing computed results with other data transfer methods.

Multi-scale Progressive Fatigue Damage Model for Unidirectional Laminates with the Effect of Interfacial Debonding (경계면 손상을 고려한 적층복합재료에 대한 멀티스케일 피로 손상 모델)

  • Dongwon Ha;Jeong Hwan Kim;Taeri Kim;Young Sik Joo;Gun Jin Yun
    • Composites Research
    • /
    • v.36 no.1
    • /
    • pp.16-24
    • /
    • 2023
  • This paper presents a multi-scale progressive fatigue damage model incorporating the model for interfacial debonding between fibers and matrix. The micromechanics model for the progressive interface debonding was adopted, which defined the four different interface phases: (1) perfectly bonded fibers; (2) mild imperfect interface; (3) severe imperfect interface; and (4) completely debonded fibers. As the number of cycles increases, the progressive transition from the perfectly bonded state to the completely debonded fiber state occurs. Eshelby's tensor for each imperfect state is calculated by the linear spring model for a damaged interface, and effective elastic properties are obtained using the multi-phase homogenization method. The fatigue damage evolution formulas for fiber, matrix and interface were proposed to demonstrate the fatigue behavior of CFRP laminates under cyclic loading. The material parameters for the fiber/matrix fatigue damage were characterized using the chaotic firefly algorithm. The model was implemented into the UMAT subroutine of ABAQUS, and successfully validated with flat-bar UD laminate specimens ([0]8,[90]8, [30]16) of AS4/3501-6 graphite/epoxy composite.

Adsorption Behaviors of Amphiphilic AuNPs at the Interface between Diverse organic Solvents and Water (다양한 유기용매와 물 경계면에서의 양친매성 금나노입자의 흡착 거동)

  • Yeon-Su Lim;Yeong-min Lee;Kyo-Chan Koo;Hee-Young Lee
    • Journal of Adhesion and Interface
    • /
    • v.25 no.1
    • /
    • pp.157-161
    • /
    • 2024
  • Amphiphilic gold nanoparticles, synthesized by the simultaneous binding of hydrophilic and hydrophobic ligands on their surfaces, find diverse applications in energy, bio, optical, electronic technologies, and various other fields. Particularly, these amphiphilic gold nanoparticles possess both hydrophilic and hydrophobic characteristics, enabling them to activate interface at the interface of immiscible fluids and form organized structures. The surface properties of gold nanoparticles play a crucial role in influencing the behaviors of amphiphilic gold nanoparticles at the interface of two fluids. Therefore, this study investigated the adsorption behaviors of gold nanoparticles at the organic solvent-water interface based on the surface characteristics of amphiphilic gold nanoparticles and the type of organic solvents. It was observed that the amount of adsorbed gold nanoparticles at the interface increased with the length of hydrocarbon chains in hydrophobic ligands and increased with shorter hydrocarbon chains in the organic solvent. Furthermore, using the Langmuir isotherm model, the study confirmed the formation of a monolayer by amphiphilic gold nanoparticles and obtained significant thermodynamic parameters simultaneously.