• Title/Summary/Keyword: 경험적 모드 분해

Search Result 31, Processing Time 0.023 seconds

Variational Mode Decomposition with Missing Data (결측치가 있는 자료에서의 변동모드분해법)

  • Choi, Guebin;Oh, Hee-Seok;Lee, Youngjo;Kim, Donghoh;Yu, Kyungsang
    • The Korean Journal of Applied Statistics
    • /
    • v.28 no.2
    • /
    • pp.159-174
    • /
    • 2015
  • Dragomiretskiy and Zosso (2014) developed a new decomposition method, termed variational mode decomposition (VMD), which is efficient for handling the tone detection and separation of signals. However, VMD may be inefficient in the presence of missing data since it is based on a fast Fourier transform (FFT) algorithm. To overcome this problem, we propose a new approach based on a novel combination of VMD and hierarchical (or h)-likelihood method. The h-likelihood provides an effective imputation methodology for missing data when VMD decomposes the signal into several meaningful modes. A simulation study and real data analysis demonstrates that the proposed method can produce substantially effective results.

Assessment for Detecting Trend using Empirical Mode Decomposition Method (경험적 모드분해법을 활용한 경향성 분석의 적용성 평가)

  • Kim, Taereem;Choi, Wonyoung;Seo, Jungho;Heo, Jun-Haeng
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.232-232
    • /
    • 2016
  • 주어진 시계열 자료의 경향성을 분석하고 판별하는 것은 수문 자료의 분석에서 가장 우선적으로 수행되어야 할 절차이며 경향성의 유무에 따라 자료를 분석하는 방법이 달라지게 되므로 매우 중요한 부분이다. 일반적으로 국내에서 주로 사용되는 수문 시계열 자료의 경향성 분석 방법으로는 비매개변수적인 방법인 Mann-Kendall test, Spearman's rho test, Hotelling Pabst test, Sentest 등이 있으며 그 중에서도 국내외 수문 자료의 경향성 분석에는 비교적 높은 기각력을 보이는 Mann-Kendall test가 주된 방법으로 활용되어 오고 있다. Mann-Kendall test는 통계적 유의성을 바탕으로 한 경향성 판별 방법으로 시계열 자료 내에 존재하는 경향성의 형태를 분석하여 경향성 유무를 판별하는 것에는 한계가 있다. 경험적 모드분해법을 활용한 경향성 분석 방법은 체거름 과정을 통하여 주어진 시계열 자료를 내재모드함수로 분해한 후, 추출된 모든 요소를 제거하고 남은 잔여값의 형태를 이용하여 경향성 유무를 판별하는 방법으로 자료에 내재된 경향성의 형태를 확인할 수 있는 장점을 가지고 있다. 본 연구에서는 이러한 경험적 모드분해법을 이용한 경향성 분석 방법을 소개하고, 모의를 통한 시계열 자료를 이용하여 경향성 분석에 적용한 후 기존에 사용되어온 Mann-Kendall test와의 비교를 통해 적용성을 평가하였다.

  • PDF

Predictation of Precipitation using Empirical Mode Decomposition (경험적 모드분해법을 활용한 우리나라 강수의 예측)

  • Choi, Wonyoung;Shin, Hongjoon;Kim, Taereem;Heo, Jun-Haeng
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.147-147
    • /
    • 2016
  • 최근 기후변화로 인한 기상이변이 빈번히 발생하면서 그로 인한 피해도 점점 증가하고 있다. 이를 최소화하기 위해서는 기후변화가 강수에 미치는 영향에 대한 연구가 필요하며, 특히 강수의 기후변화를 고려한 장기적인 변동에 대한 예측이 매우 중요하다. 그 중, 기후변화로 인한 강수현상의 변화를 분석하기 위한 방법 중 하나로 강수 현상이 주변 기후 요소의 분포에 영향을 받는다는 가정 하에 기상인자를 통하여 강수를 예측하는 방법이 있다. 우리나라에 영향을 미치는 주변 기상인자들과 강수 간의 상관관계를 분석하여 상관관계가 높게 나타나는 기상인자를 통해 우리나라 강수량을 예측하면 장기적인 관점에서 강수 예측의 정확도를 높일 수 있다. 하지만 상관관계 분석에 있어서 강수 원 자료 와 기상인자간의 상관관계를 비교할 경우 원 자료가 가지는 큰 변동성으로 인해 정확한 상관관계 분석이 이루어지지 않을 가능성이 크다. 따라서 강수자료를 분해하여 분해된 요소별로 상관관계를 분석하여 분석의 정확도를 높일 필요가 있다. 다양한 자료 분해 방법중 경험적 모드분해법(Empirical Mode Decomposition, EMD)을 사용할 경우 자료의 분해에 있어서 주기성, 경향성에 따라 분해가 가능하며, 비정상성을 가지고 있는 시계열에 대해 효과적으로 분해가 가능한 장점이 있다. 본 연구에서는 30년 이상의 자료기간을 가지는 지점의 강수량 자료를 바탕으로 경험적 모드분해법을 이용하여 강수자료를 분해하고, 이를 다양한 기상인자와의 상관관계를 분석함으로써, 우리나라 강수량 변동과 연관이 있는 기상인자들을 선별하였다. 선별된 기상인지를 바탕으로 다중회귀분석을 수행하여 기상인자를 독립변수로 하는 강수 예측식을 구축하여 우리나라 강수의 예측 가능성을 살펴보고자 한다.

  • PDF

Correlation analysis between climate indices and Korean precipitation and temperature using empirical mode decomposition : I. Data decomposition and characteristic analysis (경험적 모드분해법을 이용한 기상인자와 우리나라 강수 및 기온의 상관관계 분석 : I. 자료의 분해 및 특성 분석)

  • Ahn, Si-Kweon;Choi, Wonyoung;Kim, Taereem;Heo, Jun-Haeng
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.3
    • /
    • pp.197-205
    • /
    • 2016
  • Recently, natural hazards have occurred frequently due to climate change. The research need for predicting variability and tendency of precipitation and temperature has been increased. However, it is difficult to determine the characteristics of precipitation and temperature within a confidence range since they change due to complex factors with choppy and too many components. If their characteristics having more than one component are decomposed, then it can be useful for determining the variation of such characteristics more accurately. In this study, Korean precipitation and temperature were decomposed and their Intrinsic Mode Function (IMF) were extracted from Empirical Mode Decomposition (EMD). Finally, the characteristics of Korean precipitation and temperature data were analyzed in terms of periodicity and tendency.

A Study on the Predictive Power Improvement of Time Series Model with Empirical Mode Decomposition Method (경험적 모드분해법을 이용한 시계열 모형의 예측력 개선에 관한 연구)

  • Kim, Taereem;Shin, Hongjoon;Nam, Woosung;Heo, Jun-Haeng
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.12
    • /
    • pp.981-993
    • /
    • 2015
  • The analysis of hydrologic time series data is crucial for the effective management of water resources. Therefore, it has been widely used for the long-term forecasting of hydrologic variables. In tradition, time series analysis has been used to predict a time series without considering exogenous variables. However, many studies using decomposition have been widely carried out with the assumption that one data series could be mixed with several frequent factors. In this study, the empirical mode decomposition method was performed for decomposing a hydrologic time series data into several components, and each component was applied to the time series models, autoregressive moving average (ARMA). After constructing the time series models, the forecasting values are added to compare the results with traditional time series model. Finally, the forecasted estimates from ARMA model with empirical mode decomposition method showed better performance than sole traditional ARMA model indicated from comparing the root mean square errors of the two methods.

Amplitude and phase analysis of the brain Evoked Potential about performing a task related to visual stimulus using Empirical mode decomposition (경험적 모드 분해를 이용한 시각자극 관련 과제수행에 대한 뇌 유발전위 진폭과 위상 변화 분석)

  • Lee, ByuckJin;Yoo, Sun-Kook
    • Science of Emotion and Sensibility
    • /
    • v.18 no.1
    • /
    • pp.15-26
    • /
    • 2015
  • In this paper, amplitude and phase difference patterns for theta and alpha bands of the Evoked Potential(EP) in relation to perform a task at visual stimulus were analyzed using the Empirical mode decomposition(EMD). The EMD is applied to decompose EP signals with task-related sub-frequency band signals. Intrinsic mode function was implied in Hilbert transform and instantaneous amplitude and phase differences of theta and alpha were derived from Hilbert transformed EP. In a task status, large amplitude for both bands was observed at P2, N2, and P3 points as well as maximum phase difference was observed at N1 and P2. We confirmed that both bands are associated with a task at visual stimulus, and less associated with fixation. The proposed method enhances the time and frequency resolution in comparison with band-pass filter method which observed different phase results according to conditions.

Correlation Analysis Between Climate Indices and Long-Term Trend of Extreme Rainfall using EEMD (앙상블 경험적 모드분해법을 이용한 기상인자와 우리나라 극치강우의 장기경향성간의 상관성 분석)

  • Kim, Hanbeen;Joo, Kyungwon;Kim, Taereem;Heo, Jun-Haeng
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.230-230
    • /
    • 2019
  • 대규모순환패턴과 같은 기후시스템에서의 상태와 변화를 정량화하여 나타낸 기상인자는 수문기상학적 변수와 밀접한 연관이 있는 것으로 알려져 있으며, 이에 따라 비정상성 빈도해석의 수행에 있어서 확률분포모형의 매개변수에 대한 공변량으로 널리 활용되고 있다. 본 연구에서는 비정상성 강우빈도해석 시 매개변수의 공변량으로 우리나라의 극치강우의 장기경향성을 잘 반영할 수 있는 기상인자를 선정하고자 한다. 먼저, 시계열자료를 주기성을 가지는 내재모드함수와 장기경향성을 나타내는 잔여값으로 분해할 수 있는 앙상블 경험적 모드분해법을 이용하여 우리나라 전역에 분포된 61개 지점에서 관측된 연 최대치 강우자료의 평균 및 분산에 대한 잔여값을 추출하였다. 다음으로 11개의 월 단위 기상인자에 대한 계절별 연 평균 시계열과 추출된 평균 및 분산의 잔여값과의 상관계수를 산정하였다. 그 결과, 11개의 기상인자 중 Atlantic Meridional Mode (AMM), Atlantic Multi-decadal Oscillation (AMO), North Atlantic Oscillation (NAO)가 우리나라 연 최대치 강우자료의 평균 및 분산에 대한 장기경향성과 높은 상관성이 있는 것으로 나타났다. 계절적으로는 AMM과 AMO의 경우 이전 년도 가을철 평균이 전 지점 평균 약 0.6, NAO는 이전 년도 여름철 평균이 전 지점 평균 0.3 이상의 유의한 상관계수를 가지는 것으로 나타났다.

  • PDF

Hierarchical Smoothing Technique by Empirical Mode Decomposition (경험적 모드분해법에 기초한 계층적 평활방법)

  • Kim Dong-Hoh;Oh Hee-Seok
    • The Korean Journal of Applied Statistics
    • /
    • v.19 no.2
    • /
    • pp.319-330
    • /
    • 2006
  • A signal in real world usually composes of multiple signals having different scales of frequencies. For example sun-spot data is fluctuated over 11 year and 85 year. Economic data is supposed to be compound of seasonal component, cyclic component and long-term trend. Decomposition of the signal is one of the main topics in time series analysis. However when the signal is subject to nonstationarity, traditional time series analysis such as spectral analysis is not suitable. Huang et. at(1998) proposed data-adaptive method called empirical mode decomposition (EMD) . Due to its robustness to nonstationarity, EMD has been applied to various fields. Huang et. at, however, have not considered denoising when data is contaminated by error. In this paper we propose efficient denoising method utilizing cross-validation.

Correlation analysis between climate indices and Korean precipitation and temperature using empirical mode decomposition : II. Correlation analysis (경험적 모드분해법을 이용한 기상인자와 우리나라 강수 및 기온의 상관관계 분석 : II. 상관관계 분석)

  • Ahn, Si-Kweon;Choi, Wonyoung;Shin, Hongjoon;Heo, Jun-Haeng
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.3
    • /
    • pp.207-215
    • /
    • 2016
  • In this study, it is analyzed how large scale climate variation has an effect on climate systems over Korea using correlation analysis between climate indices and Intrinsic Mode Functions (IMFs) of precipitation and temperature. For this purpose, the estimated IMFs of precipitation and temperature from the accompanying paper were used. Furthermore, cross correlation coefficients and lag time between climate indices and IMFs were calculated considering periodicities and tendencies. As results, more accurate correlation coefficients were obtained compared with those between climate indices and raw precipitation and temperature data. We found that the Korean climate is closely related with climate variations of $El-Ni{\tilde{n}}o$ in terms of periodicity and its tendency is followed with increasing sea surface temperature due to climate change.

Empirical Mode Decomposition using the Second Derivative (이차 미분을 이용한 경험적 모드분해법)

  • Park, Min-Su;Kim, Donghoh;Oh, Hee-Seok
    • The Korean Journal of Applied Statistics
    • /
    • v.26 no.2
    • /
    • pp.335-347
    • /
    • 2013
  • There are various types of real world signals. For example, an electrocardiogram(ECG) represents myocardium activities (contraction and relaxation) according to the beating of the heart. ECG can be expressed as the fluctuation of ampere ratings over time. A signal is a composite of various types of signals. An orchestra (which boasts a beautiful melody) consists of a variety of instruments with a unique frequency; subsequently, each sound is combined to form a perfect harmony. Various research on how to to decompose mixed stationary signals have been conducted. In the case of non-stationary signals, there is a limitation to use methodologies for stationary signals. Huang et al. (1998) proposed empirical mode decomposition(EMD) to deal with non-stationarity. EMD provides a data-driven approach to decompose a signal into intrinsic mode functions according to local oscillation through the identification of local extrema. However, due to the repeating process in the construction of envelopes, EMD algorithm is not efficient and not robust to a noise, and its computational complexity tends to increase as the size of a signal grows. In this research, we propose a new method to extract a local oscillation embedded in a signal by utilizing the second derivative.