Abstract
A signal in real world usually composes of multiple signals having different scales of frequencies. For example sun-spot data is fluctuated over 11 year and 85 year. Economic data is supposed to be compound of seasonal component, cyclic component and long-term trend. Decomposition of the signal is one of the main topics in time series analysis. However when the signal is subject to nonstationarity, traditional time series analysis such as spectral analysis is not suitable. Huang et. at(1998) proposed data-adaptive method called empirical mode decomposition (EMD) . Due to its robustness to nonstationarity, EMD has been applied to various fields. Huang et. at, however, have not considered denoising when data is contaminated by error. In this paper we propose efficient denoising method utilizing cross-validation.
현실세계에서 관찰되는 시그널(signal)은 다양한 주파수(frequency)들의 시그널로 혼합되어 있는 경우가 많다. 예를 들어 태양 흑점 자료의 경우 약 11년 주기와 85년 주기로 변동한다는 사실은 널리 알려져 있다. 또한 경제 시계열 자료의 경우는 통상적으로 계절요인(seasonal component), 순환요인(cyclic component) 그리고 장기적인 추세요인(long-term trend)으로 분해하여 분석한다. 이러한 시계열 자료를 구성요소별로 분해하는 것은 오래된 주제중 하나이다. 전통적인 시계열자료 분석기법으로 스펙트럴 분석기법 등이 널리 사용되고 있으나 시계열 자료들이 비정상(nonstationary)일 경우에는 적용하기 어렵다. Huang et. al(1998)은 경험적 모드분해법(empirical mode decomposition)이라고 하는 자료적응적인(data-adaptive) 방법을 제안하였는데, 비정상성(nonstationarity)에 대한 강건성(robustness)으로 여러 분야에 널리 응용되고 있다. 그러나 Huang et. at(1998)은 잡음(error)에 의해 오염된 자료에 대한 구체적인 처리방법은 제시하지 못하고 있다. 본 논문을 통하여 효율적인 잡음제거 방법을 제안하고자 한다.