DOI QR코드

DOI QR Code

Amplitude and phase analysis of the brain Evoked Potential about performing a task related to visual stimulus using Empirical mode decomposition

경험적 모드 분해를 이용한 시각자극 관련 과제수행에 대한 뇌 유발전위 진폭과 위상 변화 분석

  • Lee, ByuckJin (Graduate School of Biomedical Engineering, Yonsei University) ;
  • Yoo, Sun-Kook (Department of Medical Engineering, Yonsei University)
  • 이벽진 (연세대학교 생체공학협동과정) ;
  • 유선국 (연세대학교 의학공학교실)
  • Received : 2014.09.05
  • Accepted : 2015.02.17
  • Published : 2015.03.30

Abstract

In this paper, amplitude and phase difference patterns for theta and alpha bands of the Evoked Potential(EP) in relation to perform a task at visual stimulus were analyzed using the Empirical mode decomposition(EMD). The EMD is applied to decompose EP signals with task-related sub-frequency band signals. Intrinsic mode function was implied in Hilbert transform and instantaneous amplitude and phase differences of theta and alpha were derived from Hilbert transformed EP. In a task status, large amplitude for both bands was observed at P2, N2, and P3 points as well as maximum phase difference was observed at N1 and P2. We confirmed that both bands are associated with a task at visual stimulus, and less associated with fixation. The proposed method enhances the time and frequency resolution in comparison with band-pass filter method which observed different phase results according to conditions.

본 논문에서는 경험적 모드 분해 방법을 이용하여 시각자극 출현에 따른 과제 수행 시 발생하는 뇌 유발전위의 ${\theta}$${\alpha}$대역에 대한 진폭과 위상변화를 확인하였다. 과제수행에 대한 뇌 유발전위를 구성 주파수 대역 별로 분해하기 위하여 경험적 모드 분해 방법을 적용하였고, 분해된 각 내재모드함수에 힐버트 변환을 적용하여 뇌 유발전위의 ${\theta}$${\alpha}$대역의 순간 진폭과 위상 변화를 확인하였다. 과제 수행 시 뇌 유발전위의 P2, N2과 P3지점에서 ${\theta}$${\alpha}$대역의 진폭이 크게 관찰되었으며, N1, P2부근에서 순간 위상의 변화가 최대가 되었다. 시각 자극 출현에 따른 응시 상태에서는 두 대역 모두 관련된 위상 변화시점이 확인되지 않았다. 대역통과필터 방법 적용 시, 경험적 모드 분해 방법에 비해 시간과 주파수 해상도가 떨어졌으며, 필터의 파라미터에 따라 위상 변화 시점의 결과에 차이가 발생하였다. 연구를 통해 ${\theta}$${\alpha}$대역이 시각 자극 출현에 따른 과제 수행에 대한 뇌 유발전위의 주요성분인 ${\theta}$${\alpha}$대역의 위상변화와 뇌 유발전위의 생성을 위상 변화와 연관 지어 해석하였다.

Keywords

References

  1. Ademoglu, A., & Demiralp, T. (1992). Quadratic phase coupling of electroencephalogram (EEG) and evoked potentials(EP). In Biomedical Engineering Days, 1992., Proceedings of the 1992 International (pp. 146-150). IEEE.
  2. Babloyantz, A. (1988). Chaotic dynamics in brain activity. In Dynamics of sensory and cognitive processing by the brain (pp. 196-202). Springer Berlin Heidelberg.
  3. ChungKi Lee, (2011). Quantitative Analysis of Affective States based on Psycho-physiological Research using Biosignal Processing Technique. The graduate School, Yonsei University, Seoul, Korea.
  4. Equis, S., & Jacquot, P. (2010). Phase extraction in dynamic speckle interferometry with empirical mode decomposition and Hilbert transform. Strain, 46(6), 550-558. https://doi.org/10.1111/j.1475-1305.2008.00451.x
  5. Freunberger, R., Klimesch, W., Doppelmayr, M., & Holler, Y. (2007). Visual P2 component is related to theta phase-locking. Neuroscience letters, 426(3), 181-186. https://doi.org/10.1016/j.neulet.2007.08.062
  6. Geum-boon Lee & Beom-joon Cho, (2010). EMD based Cardiac Arrhythmia Classification using Multi-class SVM. Journal of the Korea Institute of Information and Communication Engineering, 14(1), 16-22. https://doi.org/10.6109/jkiice.2010.14.1.016
  7. Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih, H. H., Zheng, Q., & Liu, H. H. (1998). The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 454(1971), 903-995. https://doi.org/10.1098/rspa.1998.0193
  8. Jacobs, J., Hwang, G., Curran, T., & Kahana, M. J. (2006). EEG oscillations and recognition memory: theta correlates of memory retrieval and decision making. Neuroimage, 32(2), 978-987. https://doi.org/10.1016/j.neuroimage.2006.02.018
  9. Karl E. Misulis & Toufic Fakhoury. (2001). Spehlmann's Evoked Potential Primer. Butterworth-heinemann.
  10. Kim, W. S., & Han, S. K. (2006). Phase analysis of single-trial EEGs: Phase resetting of alpha and theta rhythms. Neurocomputing, 69(10), 1337-1340. https://doi.org/10.1016/j.neucom.2005.12.103
  11. Klimesch, W. (1999). EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain research reviews, 29(2), 169-195. https://doi.org/10.1016/S0165-0173(98)00056-3
  12. Klimesch, W., Schack, B., Schabus, M., Doppelmayr, M., Gruber, W., & Sauseng, P. (2004). Phase-locked alpha and theta oscillations generate the P1-N1 complex and are related to memory performance. Cognitive Brain Research, 19(3), 302-316. https://doi.org/10.1016/j.cogbrainres.2003.11.016
  13. Klimesch, W., Sauseng, P., & Hanslmayr, S. (2007). EEG alpha oscillations: the inhibition-timing hypothesis. Brain research reviews, 53(1), 63-88. https://doi.org/10.1016/j.brainresrev.2006.06.003
  14. Kun Song, Ming Meng, Lin Chen, Ke Zhou, and Huan Luo (2014). Behavioral Oscillations in Attention: Rhythmic alpha Pulses Mediated through theta Band. The Journal of Neuroscience, 34(14), 4837-4844. https://doi.org/10.1523/JNEUROSCI.4856-13.2014
  15. Le Van Quyen, M., Foucher, J., Lachaux, J. P., Rodriguez, E., Lutz, A., Martinerie, J., & Varela, F. J. (2001). Comparison of Hilbert transform and wavelet methods for the analysis of neuronal synchrony. Journal of neuroscience methods, 111(2), 83-98. https://doi.org/10.1016/S0165-0270(01)00372-7
  16. Michel, C. M., Kaufman, L., & Williamson, S. J. (1994). Duration of EEG and MEG ${\alpha}$ suppression increases with angle in a mental rotation task. Journal of cognitive neuroscience, 6(2), 139-150. https://doi.org/10.1162/jocn.1994.6.2.139
  17. Pachori, R. B., & Bajaj, V. (2011). Analysis of normal and epileptic seizure EEG signals using empirical mode decomposition. Computer methods and programs in biomedicine, 104(3), 373-381. https://doi.org/10.1016/j.cmpb.2011.03.009
  18. Pigorini, A., Casali, A. G., Casarotto, S., Ferrarelli, F., Baselli, G., Mariotti, M., & Rosanova, M. (2011). Time-frequency spectral analysis of TMS-evoked EEG oscillations by means of Hilbert-Huang transform. Journal of neuroscience methods, 198(2), 236-245. https://doi.org/10.1016/j.jneumeth.2011.04.013
  19. Rilling, G., Flandrin, P., & Goncalves, P. (2003, June). On empirical mode decomposition and its algorithms. In IEEE-EURASIP workshop on nonlinear signal and image processing. 3, 8-11.
  20. Sauseng, P., & Klimesch, W. (2008). What does phase information of oscillatory brain activity tell us about cognitive processes? Neuroscience & Biobehavioral Reviews, 32(5), 1001-1013. https://doi.org/10.1016/j.neubiorev.2008.03.014
  21. Sweeney-Reed, C. M., & Nasuto, S. J. (2007). A novel approach to the detection of synchronisation in EEG based on empirical mode decomposition. Journal of computational neuroscience, 23(1), 79-111. https://doi.org/10.1007/s10827-007-0020-3
  22. Sweeney-Reed, C. M., & Nasuto, S. J. (2009). Detection of neural correlates of self-paced motor activity using empirical mode decomposition phase locking analysis. Journal of neuroscience methods, 184(1), 54-70. https://doi.org/10.1016/j.jneumeth.2009.07.023
  23. Varela, F., Lachaux, J. P., Rodriguez, E., & Martinerie, J. (2001). The brainweb: phase synchronization and large-scale integration. Nature reviews neuroscience, 2(4), 229-239. https://doi.org/10.1038/35067550
  24. Vazquez Marrufo, M., Vaquero, E., Cardoso, M.J., Gomez, C.M., 2001. Temporal evolution of alpha and beta bands during visual spatial attention. Brain Res. Cogn. Brain Res. 12, 315-320. https://doi.org/10.1016/S0926-6410(01)00025-8
  25. Williams, N., Nasuto, S. J., & Saddy, J. D. (2011). Evaluation of empirical mode decomposition for event-related potential analysis. EURASIP Journal on Advances in Signal Processing, 2011(1), 965237. https://doi.org/10.1155/2011/965237
  26. Zhang, J., Wang, N., Kuang, H., & Wang, R. (2014). An improved method to calculate phase locking value based on Hilbert-Huang transform and its application. Neural Computing and Applications, 24(1), 125-132. https://doi.org/10.1007/s00521-013-1510-z