• Title/Summary/Keyword: 경주분지

Search Result 26, Processing Time 0.028 seconds

Paleotopography of the Gyeongju Basin and the location of the Silla Tombs of Daerungwon (경주분지의 고지형과 대릉원 일원 신라고분의 입지)

  • Shim, Hyeon Cheol
    • Korean Journal of Heritage: History & Science
    • /
    • v.51 no.4
    • /
    • pp.234-253
    • /
    • 2018
  • Within the Gyeongju Basin lies the central an ancient tombs (Wolseongbuk tombs), which are seen to be the core tombs of the Silla ruling class. An accurate understanding of the location of the ancient tombs, commonly known as a flatland area, provides a clue to understanding the contrast process and direction of the ancient tombs. This in turn requires an accurate understanding of the surrounding landscape, including where the ancient tombs are located. In other words, it must be possible to restore as much of the highland area as possible within the basin in which the ancient tombs are located. All data were analyzed as deeply as possible in order to identify the topographical features of the ancient tombs. As a result, it appears that the ancient tombs are located at the end of a fan or at the end of the line, and a large number of springs and wetlands are distributed around the area. This area is relatively low and unsuitable for generating high levels of moisture on the ground. These topographical features are directly related with the distribution of polymers, and solids were completely formed to avoid wetlands. Meanwhile, the ancient tombs are divided into several zones by springs and wetlands, and each area also has the characteristics of large groups where the boundaries are protruding and isolated. Also, this aspect was found to be true for the Oreung around Namcheon. After all, the location and distribution of Silla in the Daerungwon area are the result of the reflection of the fine geographical features of the Gyeongju basin, which are the key factors of springwater and wetlands.

Location of Recent Micro-earthquakes in the Gyeongju Area (최근 경주지역 미소지진 진원 위치)

  • Han, Minhui;Kim, Kwang-Hee;Son, Moon;Kang, Su Young;Park, Jung-Ho
    • Geophysics and Geophysical Exploration
    • /
    • v.19 no.2
    • /
    • pp.97-104
    • /
    • 2016
  • Small to large earthquakes have been reported in Gyeongju and its vicinity in southeast Korea during historical period as well as instrumental observation period. We identified and located more than 300 earthquakes that occurred between January 2010 and December 2014 in a $20km{\times}30km$ area, but were unreported because of their small magnitudes. We used the Joint Hypocenter Determination (JHD) method to minimize the influence of the differences between the actual earth structure and 1-D velocity model for earthquake locations. The potential relationship between the previously reported Quaternary faults and the earthquake hypocenters was investigated. Many micro-earthquakes were found to be located in the southern segment of the Yeonil Tectonic Line, the Seokup fault, and the Waup basin boundary faults.

Intensity Analysis of the 26 June 1997 Kyongju Earthquake and Its Geological Significance (1997년 6월 26일 경주지진의 진도분석 및 지진 지질학적 의의)

  • 경재복;이희욱
    • The Journal of Engineering Geology
    • /
    • v.8 no.1
    • /
    • pp.13-23
    • /
    • 1998
  • An intensity of the 1997 Kyungju earthquake(M=4.3) was estimated at three hundred locations based on the field survey and questionaires from 2200 residents. The isoseismal shows almost circular pattern which doesnot reflect some specific geological trends. However,most of the Kyeongsang basin except the southwestern part is included within the area of MM intensity V. There occurred strong shaking, numerous cracks on the wall of the houses, and movement of slate on the roofs, falling of the tiles from the monument. The isoseismal of the highest MM intensity VII, 1-3 km in width and 9 km in length, is elongated along the Yangsan fault, which is located about 1.5 km west from epicenter. The lineaments near the epicenter exhibit almost N-S and NNE directions. The lineament distribution, the pattern of damage area and the solution of fault plane suggest that the Kyongju earthquake occurred with strike-slip sense along the Yangsan fault. The calculated intensity attenuation(I) with distance(R) is as follows : $I{\;}={\;}I_o{\;}+{\;}0.3461{\;}-{\;}0.3274{\;}{\times}{\;}1nR{\;}-{\;}0.086{\;}{\times}{\;}R$.

  • PDF

Emplacement Depth of Cretaceous Granites in Kyeongsang Basin, E Korea (경상분지내 백악기 화강암류의 정치 깊이에 관한 연구)

  • Ko, Jeong-Seon;Yun, Sung-Hyo;Ahn, Ji-Young;Kim, Hyang-Soo;Choi, You-Jong
    • Journal of the Korean earth science society
    • /
    • v.21 no.1
    • /
    • pp.59-66
    • /
    • 2000
  • In Kyeongsang basin, there were very dynamic magmatic activities, resulting to form volcanic and plutonic rocks. A plutonic recycle appeared in this region. Presumption of the pressure for hornblende-bearing granitic rock among the plutonic rocks, can support important informations for the emplacement depth of Cretaceous Bulgugsa granites in Kyeongsang basin. $Al^T$(Al total) contents of hornblende is related to the pressure, oxygen fugacity, and compositions of other minerals having the solid solution. So we apply the $Al^T$ content of hornblende to several empirical and experimental geobarometer systems to presume the pressure and to determine the emplacement depth of Cretaceous Bulgugsa granites in Kyeongsang basin from the inferred pressure. With the result that we applied the $Al^T$ contents of hornblende to the various geobarometers, there was a positive relationship between the pressure and $Al^T$. The minimum pressure value ranges from 0.73 to 1.70kbar in Kyeongju and the maximum value from 2.02 to 3.16kbar in Kimhae. And then the tectonic setting in Kyeongsang basin has no relation to the emplacement depth of Cretaceous granites and means variations with the movement of vertical component in each area. As we suppose that the density of earth's crust is $2.8g/cm^3$, the average values of the emplacement depth ranges in each area range from 2.6 to 11.4km. These data confirm the previous idea about the emplacement depth of Cretaceous granites in Kyeongsang basin, and these geobarometers using the $Al^T$ contents of hornblende is available though they have much limits. Therefore Cretaceous Bulgugsa granites in Kyeongsang basin was the shallow depth intrusive rut and the exposed granites was the shallow depth crust.

  • PDF

The Preservation Policy and Historical Landscape Characteristic of Ancient City Gyeongju (고도경주의 역사문화경관 특성과 보존 대책)

  • Kang, Tai-Ho
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.28 no.4
    • /
    • pp.64-75
    • /
    • 2010
  • Gyeongju, with its thousand-year-old history of the Silla Dynasty, is an impressive historical city where beautiful nature of mountains in the background and rivers in its front is getting along with the city landscape. The historic landscape of Gyeongju is divided into three groups: the old town, the ruins preservation region in the southeast of old towns, and the natural landscape region surrounding these regions. The old town region shows a common landscape of which general small cities in Korea may have, while its surroundings display the overlaps of natural and historic landscapes. The special city landscape is presented only in Gyeongju. Nevertheless, the northern area of the old town was built based on the concept of new towns without any height restriction of buildings, damaging the historic landscape of Gyeongju. It is misjudgment by interpreting the cultural heritage as the individual artifact rather than the continuous historic landscape. Since the 1970s when rapid industrialization and urbanization appeared along with the comprehensive development for Gyeongju tourism, the historic landscape has been slowly damaged. There were not enough financial and political supports from the central government, because the project for Gyeongju tourism was focused on the investment on the tourist industry. Now, in order to preserve the historical city like Gyeongju which represents the culture of Korea, the central government should actively engage in its protection. Policies of the central government should be focused on educating people that the historical restoration of Gyeongju is a way of recovering the national pride, and drawing the agreement of people. For its accomplishment, the government should change its policy from economy-oriented to culture-oriented. That is, the cultural policy should be emphasized.

Analysis of Geotechnical Seismic Sensitivity in Gyeongju (경주 지역의 지반공학적 지진 민감도 분석)

  • 방은석;선창국;김동수;정충기;조성호
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.1
    • /
    • pp.57-65
    • /
    • 2001
  • 역사적 지진 발생 기록이 풍부하고 양산 단층 영향권 내에 있어 지진 발생 가능성이 높은 경주 지역을 대상으로 지진민감도 분석을 수행하였다. 지형적 특성을 고려한 지반조사와 현장 및 실내 시험을 통하여 대상 지역 지반의 지층 구성과 각 지층의 동적 특성을 분석 평가하고, 이를 토대로 한 지반 응답 해석을 수행하였다. 9개의 시험공을 시추하여 2개소의 크로스홀 시험과 7개소의 다운홀 시험을 실시하였고, 시추부지 포함 13개소에서 SASW 시험도 수행하였다. X선 회절 및 풍화도 분석과 공진주 시험 등의 실내시험도 병행하였다. 이러한 시험 결과를 바탕으로 El Centro 지진에 의한 지표면 최대 가속도를 등가 선형 부지응답해석을 통해 평가한 결과 붕괴방지 수준에서 0.158g~0.286g, 기능수행 수준에서 0.067g~0.116g의 분포를 보였고 퇴적층에 의하여 형성된 경주 시가지 분지 지형에서 증폭정도가 심하다는 것을 알 수 있었다. 해석 결과로 볼 때, 현행 건교부 기준 설계응답스펙트럼은 경우에 따라 지반 운동을 과소평가하고 지반 고유의 공진 현상을 고려하지 못하였다. 이러한 문제를 해결하기 위하여 개선된 지반 분류방법을 소개하였고 부지고유의 지반응답평가의 중요성에 대해 제시하였다.

  • PDF

Formation and Evolution of the Miocene Ipcheon Subbasin in Yangbuk-myeon, Gyeongju, SE Korea (한반도 남동부 경주시 양북면 마이오세 입천소분지의 형성과 발달사)

  • Seong, Changhun;Cheon, Youngbeom;Son, Moon;Sohn, Young Kwan;Kim, Jin-Seop
    • The Journal of the Petrological Society of Korea
    • /
    • v.22 no.1
    • /
    • pp.19-34
    • /
    • 2013
  • The Ipcheon Subbasin is an isolated Miocene basin in SE Korea, which has the geometry of an asymmetric graben elongated in the NE-SW direction. It is in contact with basement rocks by faults and separated from adjacent Waup and Eoil basins by the basement. The strata of the basin fills have an overall homoclinal structure, dipping toward NW or WNW. The basin fills consist of Early Miocene sediments rich in dacitic volcanic and volcaniclastic deposits and Middle Miocene non-volcanic and nonmarine conglomerates intercalated with sand layers, which are distributed in the northeastern and southwestern parts of the basin, respectively. Kinematic analysis of syndepositional conjugate faults in the basin fills indicates WNW-ESE extension of the basin. These features are very similar to those of the adjacent Waup and Eoil basins, indicating that the basin extension was governed by the NE-trending northwestern border faults and that the basin experienced a propagating rifting from NE to SW. Basaltic materials, which occur abundantly in the Eoil Basin, are totally absent in the Ipcheon Subbasin. The observations of the dacitic tuff and tuffaceous mudstone in the subbasin, on slabs and under microscope, suggest that they have lithologies very similar to those of the Yondongri Tuff in the Waup Basin. The Middle Miocene non-volcanic sediments of the Waup and Eoil basins and the Ipcheon Subbasin are distributed consistently in the southwestern part of each basin. It is thus concluded that the extension of the Ipcheon Subbasin began at about 22 Ma together with the Waup Basin and was lulled during the main extension period of the Eoil Basin between 20-18 Ma. At about 17 Ma, the subbasin was re-extended due to the activation of the Yeonil Tectonic Line associated with the propagating rifting toward SW. This event is interpreted to have provided new sedimentation space for the Middle Miocene sediments in the southwestern parts of the Waup and Eoil basins and the Ipcheon Subbasin as well.

The Geomorphic Development of Alluvial Fans in the Cyeongju City and Cheonbuk area, Southeastern Korea (경주 및 천북 지역의 선상지 지형발달)

  • 윤순옥;황상일
    • Journal of the Korean Geographical Society
    • /
    • v.39 no.1
    • /
    • pp.56-69
    • /
    • 2004
  • We investigated the distribution and geomorphic development of alluvial fan in Gyeongju City including Cheonbuk area. According to a relative height to a river bed, alluvial fans of this area are divided into Higher surface, Middle surface, and Lower surface. As alluvial fans of Bulguk temple∼Ulsan bay area, the confluent fans in Cheonbuk and Gyeongju areas were formed by the Quaternary climatic change alternating glacial and interglacial stages, and the development of N-S and NW-SE fault lines. The Gyeongju alluvial fan, the largest in Korea, has been provided as the significant space for human activity since the prehistoric age. Bukcheon river formed the Gyeongju alluvial fan had not flowed over during the prehistoric and the ancient times. In contrast with general geomorphic characteristics, many springs in the Gyeongju alluvial fan are located in the middle part of the fan because ground water reaches to the surface. It is supposed that sedimental materials were not sufficiently piled up at lower reach of Bukcheon river due to the large deposits at upper and middle reach of the basin.

Review of Radiometric Ages for Phanerozoic Granitoids in Southern Korean Peninsula (남한 지역 현생 화강암류의 연대측정 결과 정리)

  • Cheong, Chang-Sik;Kim, Nam-Hoon
    • The Journal of the Petrological Society of Korea
    • /
    • v.21 no.2
    • /
    • pp.173-192
    • /
    • 2012
  • Previous age data were reviewed for 98 sites of Phanerozoic granitoids in the southern part of the Korean Peninsula. Subduction-related granitic magmatism has occurred in southeastern Korea since Early Permian. In the middle part of the Yeongnam massif, arc-related tonalites, trondhjemites, granodiorites, and monzonites were emplaced during Early Triassic. After Middle Triassic continental collision in central Korean Peninsula, post-collisional shoshonitic and high-K series and A-type granitoids were emplaced in the southwestern Gyeonggi massif and central Okcheon belt during Late Triassic. Early Jurassic calc-alkaline granitoids are mostly distributed in the middle part of the Yeongnam massif and Mt. Seorak area, northeastern Gyeonggi massif. On the other hand, Middle Jurassic calc-alkaline granitoids pervasively occur in the Okcheon belt and central Gyeonggi massif. This selective distribution could be attributed to the change in the position of trench, subduction angle, or the direction of subduction. Most Cretaceous and Paleogene granitoids are distributed in the Gyeongsang basin, with the latter emplaced exclusively along the eastern coastline. Outside the Gyeongsang basin, Cretaceous granitoids emplaced in relatively shallow depth occur in the Gyeonggi massif and central Okcheon belt.

K-Ar Age-dating Results of Some Major Faults in the Gyeongsang Basin: Spatio-temporal Variability of Fault Activations during the Cenozoic Era (경상분지 내 주요단층의 K-Ar 연대: 신생대 단층활동의 시·공간적 특성)

  • Song, Yungoo;Sim, Ho;Hong, Seongsik;Son, Moon
    • Economic and Environmental Geology
    • /
    • v.52 no.5
    • /
    • pp.449-457
    • /
    • 2019
  • We present the K-Ar age-dating results of the bulk and the less than $0.1{\mu}m$ fraction of the fault gouges collected from some major faults in the Gyeongsang basin. We try to determine the timings of fault activation based on the mineralogical characteristics, and to interpret the spatio-temporal variability of the major fault events during the Cenozoic Era by considering together with the previous results. We propose at least the 3-times of major fault events at about 50 Ma, and just after 30 Ma and 20 Ma in the Gyeongsang basin, which were inferred from the combined approach of the K-Ar ages and the clay mineralogy of the bulk fault gouges and the <$0.1{\mu}m$ fractions. The fault activation timings of the Yangsan fault tend to be younger in the northern part than in the southern part. In particular, the inferred fault events just after 30 Ma and 20 Ma are mainly detected in the Ocheon fault and the related faults, and the fault in the Gyeongju area. The fault activation timings of the major faults can be revised accurately by using illite-age-analysis(IAA) method. These geochronological determinations of the multiple events of the major faults in the Gyeongsang basin are crucial to establish the tectonic evolution in the southeastern part of the Korean Peninsula during the Cenozoic Era.