• Title/Summary/Keyword: 경쟁적 저해제

Search Result 65, Processing Time 0.02 seconds

Inhibitory effect of cinnamon (Cinnamomum cassia Presl) extract and cinnamaldehyde on alcohol dehydrogenase (계피(Cinnamomum cassia Presl) 추출물과 cinnamaldehyde의 alcohol dehydrogenase 저해 효과)

  • Do, Jaeho;In, Man-Jin;Kim, Dong Chung
    • Journal of Applied Biological Chemistry
    • /
    • v.65 no.3
    • /
    • pp.183-187
    • /
    • 2022
  • The hot water extract from cinnamon (Cinnamomum cassia Presl) inhibited the activity of alcohol dehydrogenase (ADH) with IC50 value of 45.6 ㎍/mL. The ADH inhibitory components in cinnamon extract were relatively stable to acid and heat, but were found to be volatile. The optimum temperature and time for extracting the ADH inhibitory components from cinnamon were 80 ℃ and 2 h, respectively. Among the essential oils of cinnamon, cinnamaldehyde was the main substance for ADH inhibition. Cinnamaldehyde is considered a competitive inhibitor of ethanol to ADH. Therefore, the cinnamon extract and cinnamaldehyde showed the potential to be used as natural materials for relieving symptoms of a hangover.

The Inhibitory Effect of Cornus walteri Extract Against ${\alpha}-amylase$ (말채나무 추출물의 ${\alpha}-amylase$ 저해 활성)

  • Lim, Chae-Sung;Li, Chun-Ying;Kim, Yong-Mu;Lee, Wi-Young;Rhee, Hae-Ik
    • Applied Biological Chemistry
    • /
    • v.48 no.1
    • /
    • pp.103-108
    • /
    • 2005
  • ${\alpha}-Amylase$ inhibitor is used to control blood glucose level by inhibiting starch digestion in the small intestine and delaying the absorption of glucose. In this study, we investigated the effect of the ethanol extracts from more than 1400 species of plants against ${\alpha}-amylase$ with the aim of developing a new ${\alpha}-amylase$ inhibitor. In the results, Cornus walteri extracts showed the highest inhibition activity. The inhibitory effect of Cornus walteri extract on the carbohydrate hydrolysis enzymes has different sensitivities against ${\alpha}-amylase$ from salivary and pancreatin and against ${\alpha}-glucosidase$ from yeast and porcine small intestine. In the study of inhibition kinetics of ${\alpha}-amylase$ and ${\alpha}-glucosidase$, Cornus walteri extract showed competitive inhibition against salivary and pancreatin while showing the combination of uncompetitive and noncompetitive inhibition against ${\alpha}-glucosidase$. The Cornus walteri extract was stable at acidic and thermal conditions. As for the blood glucose and body weight levels of Cornus walteri extract, we confirmed anti-hyperglycemic and anti-obesity effects. Also, in the investigation of the mRNA lever, Cornus walteri extract upregulated the level of GLUT4 mRNA in the quadriceps muscle.

Isolation and Characterization of α-Glucosidase Inhibitor Produced by Bacillus sp. SKU31-1 Strain (Bacillus sp. SKU31-1가 생산하는 α-Glucosidase 저해제 분리 및 특성 조사)

  • Kim, Shin-Duk
    • Korean Journal of Microbiology
    • /
    • v.50 no.4
    • /
    • pp.381-383
    • /
    • 2014
  • In the course of screening for ${\alpha}$-glucosidase inhibitor produced by microorganism, the active compound was isolated from the culture filtrate of Bacillus sp. SKU31-1 using a series of chromatography procedures. The structure of the active compound was elucidated as 5-amino-1-hydroxymethyl-1, 2, 3, 4-cyclohexanetetrol on the basis of spectroscopic evidence obtained and comparison with data from the literature. The active compound showed potent inhibitory activity against ${\alpha}$-glucosidase with an $IC_{50}$ value of $1.9{\mu}M$ for maltose and 4.9 mM for sucrose. A Lineweaver-Burk plot indicated that its inhibition of ${\alpha}$-glucosidase was competitive, with a $K_i$ value of 0.15 mM.

HIV-1 RT (reverse transcriptase) 저해제에 대한 내성 발현 기전

  • 임광진
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1995.10a
    • /
    • pp.67-69
    • /
    • 1995
  • reverse transcription은 AIDS를 일으킨다고 알려진 바이러스인 HIV-1의 번식에는 필수적이나 인체 세포에는 필수적이 아니기에 이 단계를 표적으로 하는 AIDS 치료제가 우선적으로 개발되었다. 그 단계에 필요한 효소가 바이러스에 의해 만들어진 RT이며 이 효소의 작용을 저해하는 nucleoside 유도체들인 AZT, DDC, DDI 들이 현재 AIDS 환자의 치료에 사용되고 있다. 이들 nucleoside 유도체들은 세포안으로 들어가 triphosphate 형태로 변화된 후 dNTP와 상경적으로 경쟁하며 합성 중인 바이러스의 DNA에 들어가 DNA의 합성을 정지시켜 바이러스의 증식을 억제한다. 그러나, 이들 nucleoside 유도체들은 치료용량에서 심한 독성을 나타낼 뿐만 아니라 장기 투여시 내성을 나타내는 바이러스가 생겨나 AIDS의 치료를 불가능하게 하고 있다.

  • PDF

LC15-0133, a DPP IV Inhibitor: Efficacy in Various Animal Models (LC15-0133, DPP IV 저해제: 여러 동물 모델에서의 효능)

  • Yim, Hyeon-Joo
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2008.04a
    • /
    • pp.5-20
    • /
    • 2008
  • GLP-1-based drugs (GLP-1 analogues and DPP IV inhibitors) and incretin mimetics are currently one of the most exciting classes of agents for type II diabetes. GLP-1, a gut peptide, is an incretin that potentiates glucose-dependent insulin release from the pancreas, slows GI-transit and stimulates the proliferation of beta-cells. DPP IV inhibitors act like incretins by inhibiting DPP IV which inactivates GLP-1. LC15-0133 is a competitive, reversible DPP IV inhibitor ($IC_{50}$ = 24 nM, Ki=0.247 nM) with excellent selectivity over other critical human proteases such as DPP II, DPP 8, elastase, trypsin. and urokinase. LC15-0133 showed long half-life and good bioavailability in rats and dogs. Inhibition of plasma DPP IV activity by LC15-0133 was kept more than 50% 24 hours after oral dosing in rats and dogs at 0.1 mg/kg and 0.02 mg/kg, respectively. The Minimum effective doses of LC15-0133 were 0.01 mg/kg for lowering blood glucose excursion during oral glucose tolerance test and 0.1 mg/kg for increasing glucose-induced GLP-1 response in C57BL/6 mice. Repeat oral administration of LC15-0133 for 1 month delayed the progression to diabetes and reduced HbA1c levels in a dose-dependent manner in Zucker Diabetic Fatty rats. In conclusion, LC15-0133 is a novel, potent, selective and orally active DPP IV inhibitor and showed an excellent blood glucose lowering effects in various animal models.

  • PDF

Characterization of Endopeptidase of Bacillus amyloliquefaciens S94 by Chemical Modificationtion (Bacillus amyloliquefaciens에서 분리된 단백질 가수분해 효소의 화학적 수식에 의한 저해양상 분석)

  • Kim, Jong-Il
    • Korean Journal of Microbiology
    • /
    • v.39 no.4
    • /
    • pp.230-234
    • /
    • 2003
  • An extracellular protease of Bacillus amyloliquefaciens S94 was purified to apparent homogeneity. The enzyme activity was strongly inhibited by general inhibitor for serine protease, PMSF, suggesting that the enzyme is a serine protease. The purified enzyme activity was inhibited by leucine peptidase inhibitor, bestatin, suggesting that the enzyme is a leucine endopeptidase. When the enzyme was chemically modified with PMSF, which specifically reacted with serine residue on the enzyme, the activity was eliminated. The endopeptidase activity was inhibited by the modifier which chemically modified carboxyl group of aspartate and glutamate. PLP, which would modify lysine residue, did not affect the endopepetidase activity to a greater extent. This demonstrates that serine and aspartate (or glutamate) residues of enzyme would participate in a important function of the endopeptidase activity.

Kinetic Analysis of Cathepsin B Inhibitor Using a Spectrophotometric Assay (분광광도법에 의한 Cathepsin B 저해물질의 효소동력학적 저해특성 조사)

  • 한길환;김상달
    • Microbiology and Biotechnology Letters
    • /
    • v.29 no.2
    • /
    • pp.90-95
    • /
    • 2001
  • Kinetic Analysis of Cathepsin B Inhibitor Using a Spectrophotometric Assay. Han, Kil-Hwan and SangDal Kim*. Department of Applied MicrobioJ0f5Yt Yeungnam UniversitYt Kyongsan 77 2-749, Korea - The KHS 10, C4Hl10~6 formula produced from Streptomyces luteogriseus KT-] 0 effectively inhibited a lysosomal cysteine proteinase, cathepsin B. It inhibited the enzyme activity of cathepsin B competitively when the N a-CBZ-Llysine p-nitrophenyl ester HC] (CLN) was used as a substrate. The inhibition const:mt (Ki) of KHS 1 0 for cathepsin B detennined by spectrophotometeric assay was 430 nM. The effective inhibition of cathepsin B was observed at $25^{\circ}C$ :md pH 6.0. The cathepsin B inhibitor, KHSlO needed a preincubation of cathepsin B with the inhibitor for over 5 min. The KHS 10 preserved over 80% inhibition activity even after heat-treatment at $100^{\circ}C$ for ] hr.

  • PDF

Inhibition and Chemical Mechanism of Protocatechuate 3,4-dioxygenase from Pseudomonas pseudoalcaligenes KF707 (Pseudomonas pseudoalcaligenes KF707에서 유래한 protocatechuate 3,4-dioxygenase 의 저해 및 화학적 메커니즘)

  • Kang, Taekyeong;Kim, Sang Ho;Jung, Mi Ja;Cho, Yong Kweon
    • Journal of Life Science
    • /
    • v.25 no.5
    • /
    • pp.487-495
    • /
    • 2015
  • We carried out pH stability, chemical inhibition, chemical modification, and pH-dependent kinetic parameter assessments to further characterize protocatechuate 3,4-dioxygenase from Pseudomonas pseudoalcaligenes KF707. Protocatechuate 3,4-dioxygenase was stable in the pH range of 4.5~10.5. L-ascorbate and glutathione were competitive inhibitors with $K_{is}$ values of 0.17 mM and 0.86 mM, respectively. DL-dithiothreitol was a noncompetitive inhibitor with a $K_{is}$ value of 1.57 mM and a $K_{ii}$ value of 8.08 mM. Potassium cyanide, p-hydroxybenzoate, and sodium azide showed a noncompetitive inhibition pattern with $K_{is}$ values of 55.7 mM, 0.22 mM, and 15.64 mM, and $K_{ii}$ values of 94.1 mM, 8.08 mM, and 662.64 mM, respectively. $FeCl_{2}$ was the best competitive inhibitor with a $K_{is}$ value of $29{\mu}M$. $FeCl_{3}$, $MnCl_{2}$, $CoCl_{2}$, and $AlCl_{3}$ were also competitive inhibitors with $K_{is}$ values of 1.21 mM, 0.85 mM, 3.98 mM, and 0.21 mM, respectively. Other metal ions showed noncompetitive inhibition patterns. The pH-dependent kinetic parameter data showed that there may be at least two catalytic groups with pK values of 6.2 and 9.4 and two binding groups with pK values of 5.5 and 9.0. Lysine, cysteine, tyrosine, carboxyl, and histidine were modified by their own specific chemical modifiers, indicating that they are involved in substrate binding and catalysis.

Studies on Enzymatic Characteristic′s of Adenylate Kinase from Baker′s Yeast (제빵효모 Adenylate Kinase의 효소학적 특성에 관하여)

  • ;Takahisa Ohta;Hiroshi Sakai
    • Microbiology and Biotechnology Letters
    • /
    • v.12 no.4
    • /
    • pp.277-283
    • /
    • 1984
  • In the forward reaction (ADP formation) of the adenylate kinase from baker's yeast, dissociation constants from binary complexes are higher by a factor of about 4 times then those from at ternary complexes. In the reverse reaction, dissociation constants from the binary complexes are 2 times higher then those from the ternary complexes. The enzyme showed activities against various nucleotide triphospate in following orders; ATP 100, UTP 18, ITP 9 and GTP 5, of the necleotide monophosphate. only dAMP showed 33% activity of that AMP as phosphate acceptor. Divalent cations were required in enzyme reaction in following orders; $Mg^{2+}$ 100, Co$^{2+}$ 57, Mn$^{2+}$ 54, $Ca^{2+}$ 51, Ni$^{2+}$ 10 and Sn$^{2+}$ 6. AMP, as a substrate inhibitor, competitively inhibited the adenylate kinase at pH 7.2 or 8.0. Inhibition constants of the enzyme showed greater dependence on the pH of the reaction mixture, which was the lower Ki values under higher pH. Adenosine pentaphospho adenosine was competive inhibitor to the enzyme against all substrate, and it showed the same Ki values, 2.9mM. Further, PEP was competive inhibitor with respect to AMP and non-competive inhibitor with respect to MgATP. Adenylate kinase from bakers yeast was similar to mitochondrial type of animal in the contents of aianine, leucine and asparagine or asparatic acid differing from muscle type enzyme. Based on the results and observation, characteristic of yeast adenylate kinase resembled the adenylate kinase of mitochondrial type from animals. Further, difference of characteristics in adenylate kinasa depending upon the workers might be due to the difference of strain used.

  • PDF

Identification of Amino Acid Residues Involved in Xylanase Activity from Bacillus alcalophilus AX2000 by Chemical Modifiers (화학수식제에 의한 Bacillus alcalophilus AX2000 유래 Xylanase의 활성에 관여하는 아미노산 잔기의 확인)

  • Park Young-Seo
    • Microbiology and Biotechnology Letters
    • /
    • v.34 no.2
    • /
    • pp.121-128
    • /
    • 2006
  • The purified xylanase from Bacillus alcalophilus AX2000 was modified with various chemical modifiers to determine amino acid residues in the active site of the enzyme. Treatment of the enzyme with group-specific reagents such as carbodiimide or N-bromosuccinimide resulted in complete loss of enzyme activity. These results suggested that these reagents reacted with glutamic acid or aspartic acid and tryptophan residues located at or near the active site. In each case, inactivation was performed by pseudo first-order kinetics. Inhibition of enzyme activity by carbodiimide and N-bromosuccinimide showed non-competitive and competitive inhibition type, respectively. Addition of xylan to the enzyme solution containing N-bromosuccinimide prevented the inactivation, indicating the presence of tryptophan at the substrate binding site. Analysis of kinetics for inactivation showed that the loss of enzyme activity was due to modification of two glutamic acid or aspartic acid residues and single tryptophan residue.