• 제목/요약/키워드: 경사기능 재료

검색결과 133건 처리시간 0.025초

유체 유동을 고려한 경사기능재료 원통셸의 연성진동 (Coupled Vibration of Functionally Graded Cylindrical Shells Conveying Fluid)

  • 김영완;김규호;위은중
    • 한국소음진동공학회논문집
    • /
    • 제19권11호
    • /
    • pp.1119-1125
    • /
    • 2009
  • The coupled fluid-structure interaction problem is analyzed using the theoretical method to investigate the coupled vibration characteristics of functionally graded material(FGM) cylindrical shells conveying an incompressible, inviscid fluid. Material properties are assumed to vary continuously through the thickness according to a power law distribution in terms of the volume fraction of the constituents. The steady flow of fluid is described by the classical potential flow theory. The motion of shell represented by the first order shear deformation theory(FSDT) to account for rotary inertia and transverse shear strains. The effect of internal fluid can be taken into consideration by imposing a relation between the fluid pressure and the radial displacement of the structure at the interface. Numerical examples are presented and compared with exiting results.

Hydroxyapatite 와 titanium의 경사 기능 재료 제조 (Fabrication of functionally graded materials of hydroxyapatite and titanium)

  • 김성진;박지환;조경식;박노진
    • 한국결정성장학회지
    • /
    • 제12권3호
    • /
    • pp.144-148
    • /
    • 2002
  • 수산화아파타이트/티타늄 복합체를 스파크 플라즈마 소결(SPS) 장치를 이용하여 4층 경사 기능 재료 (FGM)로 제조하였다. 수산화아파타이트/티타늄 복합체의 최대 밀도와 이축 강도는 $1200^{\circ}C$에서 8분 동안의 SPS 조건에서 얻었다. 그러나, 수산화아파타이트는 $1100^{\circ}C$에서 사칼슘인산염(TetCP)으로 분해되었고, 티탄산칼숨 화합물 ($CaTiO_3$)이 형성되었다. 수산화아파타이트에 티타늄을 첨가하면 수산화아파타이트가 저온에서 쉽게 분해되었다.

경사기능재료를 사용한 회전하는 외팔보의 진동해석 (Free Vibration Analysis of a Rotating Cantilever Beam Made-up of Functionally Graded Materials)

  • 이기복;유홍희
    • 한국소음진동공학회논문집
    • /
    • 제23권8호
    • /
    • pp.742-751
    • /
    • 2013
  • The vibration analysis of a rotating cantilever beam made-up of functionally graded materials is presented based on Timoshenko beam theory. The material properties of the beams are assumed to be varied through the thickness direction following a simple power-law form. The frequency equations, which are coupled through gyroscopic coupling terms, are calculated using hybrid deformation variable modeling along with the Rayleigh-Ritz assumed mode methods. In this study, resulting system of ordinary differential equations shows the effects of power-law exponent, angular speed, length to height ratio and Young's modulus ratio. It is believed that the results will be a reference with which other researchers and commercial FE analysis program, ANSYS can compare their results.

경사기능재료 사각평판의 정적 및 진동해석 (Statics and Free Vibration Characteristics of Rectangular Plates Made of Functionally Graded Materials)

  • 민준식;송오섭;이윤규;정남희;강호식
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 추계학술대회논문집
    • /
    • pp.439-445
    • /
    • 2003
  • In the recent years, functionally graded materials(FGM) have gained considerable attention in the high temperature environment applications. In the present work, study of the deflection and vibration of a functionally graded rectangular plate made of Ti-6Al-4V and Al$_2$O$_3$ is presented. Material properties are graded in the thickness direction of the plate according to volume fraction power law distribution Effects of volume fractions(power law exponent) on the deflection and natural frequency of FGM plate is studied. Also effects of temperature is studied. Wavier Solution is used to analyzed the FGM plate.

  • PDF

경사기능재료 판의 최적설계 (Optimal Design of Functionally Graded Plates)

  • 나경수;김지환
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 춘계학술대회논문집
    • /
    • pp.1061-1064
    • /
    • 2006
  • Optimal design of functionally graded plates is investigated considering stress and critical temperature. Material properties are assumed to be temperature dependent and varied continuously in the thickness direction. The effective material properties are obtained by applying linear rule of mixtures. The 3-D finite element model is adopted using an 18-node solid element to analyze more accurately the variation of material properties and temperature field in the thickness direction. For stress analysis, the tensile stress ratio and compressive stress ratio of the structure under mechanical load are investigated. In the thermo-mechanical buckling analysis, temperature at each node is obtained by solving the steady-state heat transfer problem and Newton-Raphson method is used for material nonlinear analysis. Finally, the optimal design of FGM plates is studied for stress reduction and improving thermo-mechanical buckling behavior, simultaneously.

  • PDF

경사기능재료에서의 열탄성 불안정성 (Thermoelastic Instability in Functionally Graded Materials)

  • 장용훈;안성호;이승욱
    • 한국자동차공학회논문집
    • /
    • 제14권5호
    • /
    • pp.130-137
    • /
    • 2006
  • A transient finite element simulation is developed for the two-dimensional thermoelastic contact problem of a stationary functionally graded material between sliding layers, with frictional heat generation. Thermoelastic instability in functionally graded materials is investigated. The critical speed of functionally graded material coating disk is larger than that of the conventional steel disk. The effect of the nonhomogeneity parameter in functionally graded material is also investigated. The results show that functionally gradient materials restrain the growth of perturbation and delay the contact separation.