• Title/Summary/Keyword: 경량체

Search Result 344, Processing Time 0.025 seconds

A Study on Structural Design and Analysis for Composite Main Wing and Horizontal Tail of A Small Scale WIG Vehicle (경량화 복합재 위그선의 주익 및 수평 미익 구조 설계 및 해석에 관한 연구)

  • Kong, Chang-Duk;Park, Hyun-Bum;Kim, Ju-Il
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.2
    • /
    • pp.149-156
    • /
    • 2007
  • The present study provides structural design and analysis of main wing and horizontal tail of a small scale WIG(Wing in Ground Effect) vehicle which has been developed as a part of the high speed maritime transportation system for the future of Korea. Weight saving as well as structural stability could be achieved by skin-spar with foam sandwich design and with wide application of carbon/epoxy composite material. A commercial FEM code, NASTRAN, was utilized to confirm the structural safety and stability through sequential design modifications to meet the final design goal. In addition, each wing and the fuselage were fastened together by eight insert bolts with high strength to accomodate easy assembling and disassembling as well as to guarantee a service life longer than 20 years.

An Experimental Study on the Mechanical Properties of Concrete with High Temperatures and Cooling Conditions (고온 및 냉각조건에 따른 콘크리트의 역학적특성에 관한 실험적 연구)

  • Kim, Gyu-Yong;Kang, Yeoun-Woo;Lee, Tae-Gyu;Choe, Gyeong-Cheol;Yoon, Min-Ho
    • Journal of the Korea Institute of Building Construction
    • /
    • v.12 no.3
    • /
    • pp.323-331
    • /
    • 2012
  • Since the 1970s, the mechanical properties of concrete at high temperature, such as compressive strength, elastic modulus, thermal strain, etc. have been investigated. Internal and external factors should be effect to concrete elevated temperature. In particular, the thermal properties of aggregate and cooling conditions are most important to estimate residual mechanical properties. This study evaluates the mechanical properties of concrete with aggregate type and cooling methods. We use normal and light aggregate for different thermal properties, and also test mechanical properties to use ${\O}100{\times}200$ mm cylinder specimen according to target temperature, slow cooling and water cooling. We found that normal aggregate concrete that uses is more highly influenced by cooling conditions than concrete that uses light aggregate concrete. In addition, the residual mechanical properties of concrete increase as cooling velocity lowers.

Light Weight Authentication and Key Establishment Protocol for Underwater Acoustic Sensor Networks (수중 음파 센서 네트워크 환경에 적합한 경량화된 인증 및 키 발급 프로토콜)

  • Park, Minha;Kim, Yeog;Yi, Okyoen
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39B no.6
    • /
    • pp.360-369
    • /
    • 2014
  • Underwater Acoustic Sensor Networks(UASN) enables varied study from collected data of underwater environments such as pollution monitoring, disaster prevention. The collected data is transmitted from underwater to terrestrial communication entity by acoustic communication. Because of the constraints of underwater environments include low data rate and propagation delay, it is difficult to apply cryptographic techniques of terrestrial wireless communication to UASN. For this reason, if the cryptographic techniques are excluded, then collected data will be exposed to security threats, such as extortion and forgery, during transmission of data. So, the cryptographic techniques, such as the authentication and key establishment protocol which can confirm reliability of communication entities and help them share secret key for encryption of data, must need for protecting transmitted data against security threats. Thus, in this paper, we propose the light weight authentication and key establishment protocol.

Derivations of Buckling Knockdown Factors for Composite Cylinders Considering Various Shell Thickness Ratios and Slenderness Ratios (다양한 두께비와 세장비를 고려한 복합재 원통 구조의 좌굴 Knockdown factor의 도출)

  • Kim, Do-Young;Sim, Chang-Hoon;Kim, Han-Il;Park, Jae-Sang;Yoo, Joon-Tae;Yoon, Young-Ha;Lee, Keejoo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.4
    • /
    • pp.321-328
    • /
    • 2021
  • This paper derives numerically new buckling Knockdown factors for the lightweight design of the composite propellant tanks for space launch vehicles. A nonlinear finite element analysis code, ABAQUS, is used for the present postbuckling analysis of composite cylinders under compressive loads. Various thickness ratios (R/t) and slenderness ratios (L/R) are considered and Single Perturbation Load Approach is applied to represent the geometric initial imperfection of the composite cylinder. For the composite cylinder with thickness ratio of 500 and slenderness ratio of 2.04, the buckling Knockdown factor derived in this work is higher by 84.38% than NASA's previous buckling design criteria. Therefore, it is investigated that a lightweight design is possible when the present Knockdown factors are used for the design of composite propellant tanks. In addition, it is shown that global buckling loads and buckling Knockdown factors decrease as the thickness ratio or slenderness ratio of composite cylinders increases.

Design of Lightweight S-Box for Low Power AES Cryptosystem (저전력 AES 암호시스템을 위한 경량의 S-Box 설계)

  • Lee, Sang-Hong
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.1
    • /
    • pp.1-6
    • /
    • 2022
  • In this paper, the design of lightweight S-Box structure for implementing a low power AES cryptosystem based on composite field. In this approach, the S-Box is designed as a simple structure by which the three modules of x2, λ, and GF((22)2) merge into one module for improving the usable area and processing speed on GF(((22)2)2). The designed AES S-Box is modelled in Veilog-HDL at structural level, and a logic synthesis is also performed through the use of Xilinx ISE 14.7 tool, where Spartan 3s1500l is used as a target FPGA device. It is shown that the designed S-Box is correctly operated through simulation result, where ModelSim 10.3. is used for performing timing simulation.

Compressive Strength and Environmental Investigation for Beneficial Use of Dredged Sediments (준설퇴적물 유효활용을 위한 압축강도 및 환경성 평가)

  • Yoon, Gil Lim;Bae, Yoon Shin;Yoon, Yeo Won;Kim, Suk Hyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.2C
    • /
    • pp.119-131
    • /
    • 2010
  • In this study, beneficial use of ocean contaminated sediments were investigated by laboratory and environmental tests, and their prototypes were released. Dredged material from Ulsan port is used for making cement treated samples and lightweight foamed samples, and various engineering tests were performed to identify the compressibility and stress-strain behaviors. Environmental tests were also performed for the beneficial uses. The values of Cu are a little higher than the suggested standard possible for reusing dredged material and equal to the suggested standard alarming for reusing dredged material, which shows environmental harmfulness for the reuse of construction material. In addition, particle size distribution, compaction test, Atterberg limit tests, specific gravity test, and unit weight test were performed to investigate the use of landfill cover materials. The shear strengths of cement treated soils were found to be enough for reclamation works.

Analysis of Educational System and Workforce Development Needs for Urban Air Mobility in Daegu-Gyeongbuk (대구경북지역 도심항공교통의 교육 체계 및 인력 양성 수요에 대한 분석)

  • Wooram Lee
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.4
    • /
    • pp.701-710
    • /
    • 2024
  • This study conducted a survey of companies in the aviation, drone, and Urban Air Mobility (UAM) sectors to analyze the educational and workforce needs, identifying essential competencies and technical training required. The study also proposed potential areas for collaboration between universities and industry regarding educational methods. Key findings and implications of the survey were derived. The results indicated that the most critical consideration for hiring was job-specific skills in the respective field. The most essential quality for workforce training was identified as enhancing the ability to use various equipment and software related to the major field. In the UAM sector, there was a high demand for personnel and education related to aircraft and components, with the highest demand being for lightweight manufacturing technology for aircraft. This study can serve as foundational data for addressing the educational needs in this field.

Structural Performance of One-way Void Plywood Slab System with form work Pane (거푸집 패널이 부착된 1방향 중공슬래브의 구조 성능)

  • Hur, Moo-Won;Chae, Kyoung-Hun;Hwang, Kyu-Seok;Yoon, Sung-Ho;Park, Tae-Won
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.1
    • /
    • pp.7-15
    • /
    • 2021
  • In this study, we developed Void Plywood Slab (VPS) that improved the shape of existing hollow materials. Its performance was evaluated through one-way flexural and one-way shear tests using the developed VPS. As a result of the one-way flexural performance tests of VPS, the yield load value for FPS series(longitudinal direction specimens with hollow materials) was approximately 97.5% compared to FPS-00(without hollow materials) specimen. The tests showed that the yield load was not much different. In addition, FNS series(transverse direction specimens with hollow materials) also represented about 97% of FPS-00 specimen. The one-way flexural performance was shown to have little impact from void materials. Therefore, it is confirmed that the presented system is applicable to the VPS to the slab design. The results of the one-way shear performance tests of VPS showed that it was about 92% compared to the SS-00(without hollow materials) specimen. These results were somewhat insufficient for the SS-00 specimen. Shear strength equation is expressed as the sum of shear force by concrete and shear force by reinforcement. However, in the case of void slab, it is believed that the concrete section has been deleted by the void material. However, the strength of the structure applied to the shear design, as with the flexural design, is also applied to the design based on the yield load value.

Structural Optimization for LMTT-mover of a Crane (크레인 LMTT용 이동체의 구조최적설계)

  • Min K. A.;Lee K. H.;Han D. S.;Han G. J.
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2004.11a
    • /
    • pp.311-316
    • /
    • 2004
  • LMTT (Linear Motor-based Transfer Technology) is a horizontal transfer system for the yard automation. which has been proposed to take the place qf AGV (Automated Guided Vehicle) in the maritime container terminal. the system is based on PMLSM (Permanent Magnetic Linear Synchronous Motor) that consists of stator modules on the rail and shuttle mr. It is desirable to reduce the weight of LMTT in order to control the electronic devices with minimum energy. In this research structural optimization for a mover of shuttle mr is performed to minimize the weight satisfying design criteria the objective function is set up as weight. On the contrary, design variable is considered as transverse, longitudinal and wheel beam's thickness and shape variable determining the dimension toward high direction and the constraints are the stresses.

  • PDF

Piezo-Composite Actuator for Control Surface of a Small Unmanned Air Vehicle (소형 무인 비행체 조종면 작동용 압전 복합재료 작동기 연구)

  • Yoon, Bum-Soo;Park, Ki-Hoon;Yoon, Kwang-Joon
    • Composites Research
    • /
    • v.27 no.2
    • /
    • pp.47-51
    • /
    • 2014
  • The purpose of the present study is to develop lightweight and simple smart actuators in order to replace conventional hydraulic/pneumatic actuators, and to apply the developed actuators to the actuation systems of a small unmanned air vehicle. This research describes the procedures of design, manufacturing of the piezo-composite actuator, and the performance evaluation. From the test results of the developed devices, we found the possibility of piezo-composite actuator could be used as a control surface of a small UAV system. We have designed and manufactured two kinds of piezo-composite actuators, unimorph actuator and bimorph actuator. The manufactured actuators were evaluated through the performance testes. It was found that the bimorph type actuator showed more linear angle change for the same excitation voltage variation than unimorph type. It is expected that piezo-composite actuator has a possibility to be used not only as a control surface of small unmanned flying vehicle but also as a control surface actuator of a guided missile fin through the miniaturization of power supply and control system.