• Title/Summary/Keyword: 경량기포콘크리트

Search Result 158, Processing Time 0.033 seconds

Effect of Foaming Agent on the Continuous Voids in Lightweight Cellular Concrete (경량기포콘크리트의 연속공극 형성에 미치는 기포제의 영향)

  • 이승한
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.5
    • /
    • pp.742-749
    • /
    • 2002
  • This study was performed to clarify the formation procedure of continuous voids in cellular concrete, and to examine the effect of a foaming agent on the manufacture of cellular concrete with continuous voids. By the experiments, it was determined that cellular concrete to be formed with continuous voids is influenced by temperature, viscosity and flowability of cement paste, and stability of air voids, and is formed in accordance with cohesion of air voids. It was also found that separate voids are formed at an added amount of air voids corresponding to 2 % or less of the amount of cement, whereas an antifoaming phenomenon occurs when the added amount of air voids exceeds 9 % of the amount of cement. In products with respective cement fineness of 3,000, 6,000, and 8,000㎠/g, a higher compressive strength was exhibited at a higher cement fineness. The continuous void ratio depending on a variation in fineness was 38 %, 52 %, and 22 % in those products, respectively. That is, a highest continuous void ratio was exhibited at a cement fineness of 6,000㎠/g. When the water-cement ratio was reduced from 45% to 25%, the compressive strength of the cellular concrete was increased from 15 kgf/㎠ to 20 kgf/㎠ Thus, the reduction in water-cement ratio was effective in achieving an increase in strength without any variation in the specific gravity of the cellular concrete.

Mechanical Performance Evaluation of Cement Paste with Foaming Agent using FEM Analysis Based on Picture Image (화상 이미지 기반 FEM 해석을 이용한 기포제 혼입 시멘트 페이스트의 역학 성능 평가)

  • Kim, Bo-Seok;Shin, Jun-Ho;Lee, Han-Seung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.1
    • /
    • pp.35-43
    • /
    • 2016
  • Concrete is a representative heterogeneous material and mechanical properties of concrete are influenced by various factors. Due to the fact that pores in concrete affect determining compressive strength of concrete, studies which deal with distribution and magnitudes of pores are very important. That way, studies using picture imaging have been emerged. Studies on mechanical performance evaluation of structural lightweight foamed concrete and FEM analysis based on picture image are inadequate because lightweight foamed concrete has been researched for only non-structural. Therefore, in this study, cement paste with foaming agent to evaluate mechanical performance is made, FEM analysis with picture image is conducted and young's modulus of experiment and analysis are compared. In this study, dosage of foaming agent is determined 7 level to check pore distribution and water-binder ratio is determined 20% to progress research about structural light weight foamed concrete. Weight of unit volume is minimum at 0.8% of foaming agent dosage. However, weight of unit volume is increased over 0.8% of foaming agent dosage because of interconnection with independent pores. For FEM analysis, cement paste is photographed to use image analyzer(HF-MA C01). Consequently, the fact that Young's Modulus of experiment and FEM analysis are same is drawn by using OOF(Object Oriented Finite elements).

Literature study on the improvement of lightweight concrete in perspective of foaming agent (기포제 관점에서 경량기포 콘크리트의 개선방향에 관한 문헌적 연구)

  • Choi, Myeong-In;Lee, Han-seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.11a
    • /
    • pp.141-142
    • /
    • 2015
  • This literature study is focused on the improvement of lightweight concrete in perspective of foaming agent. Lightweight concrete is the cured concrete as putting required amount of foaming agent to slurry which is a mixture of a certain amount of cement, sand, and water. It has lower density than general concrete, because foaming agent disintegrates numerous bubbles evenly and independently. Thus, it is capable of lightening the weight and great for sound absorption and insulation, In foreign countries, studies for structural lightweight concrete mainly of tunnel grouting and weight lightening of heavy structures are going along actively. Domestically, exterior panel and ALC blocks are alternatively used for flooring. Therefore, this research consider improvement of lightweight concrete in perspective of foaming agent with foundation study.

  • PDF

Experimental Study on the Heat Shielding Performance of Lightweight Foamed Concrete Using EPS beads. (EPS 비드를 사용한 경량기포콘크리트의 차열성능의 실험적 연구)

  • Hong, Snag-Hun;Song, Seung-Li;You, Nam-Gyu;Jung, Ui-In;Kim, Bong-Joo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.05a
    • /
    • pp.21-22
    • /
    • 2018
  • Foamed concrete is a porous concrete that is cured by mixing bubbles into cement slurry. It is lighter than ordinary concrete and is characterized by higher insulation. Lightweight foamed concerte is mainly used as a sandwich panel in Korea, and is also used as a refractory filler in fireproof safes. Studies on lightwight foamed concrete have been carried out on strength,density and thermal conductivity. However, it is confirmed that the research on the fire resistance performance is very limited. Based on this study, fire resistance of lightweight foamed concrete using expanded polystyrene beads is investigated.

  • PDF

Improvement of Strength in ALC using Admixtures and Grain Size (혼합재 및 입도에 따른 경량기포콘크리트의 강도특성 개선)

  • Kim, Young-Yup;Song, Hun;Lee, Jong-Kyu;Chu, Yong-Sik
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2007.11a
    • /
    • pp.79-82
    • /
    • 2007
  • Recently, the use of ALC has became increasingly popular. ALC is a unique building material. Because of its cellular nature, it is lightweight, self-insulating, sound and fireproof, as well as insect and mold resistant. Furthermore, ALC is free of VOCs and various fibers associated with wood and glass wool construction. However, ALC have high water absorption, low compressive strength and popout the origin of the low surface strength in its properties. These properties make troubles under construction such as cracking and popout. Thus, this study is to improve the fundamental strength by controls of increasing of admixtures, and grain size. Admixtures make use of metakaolin, silica fume, sodium silicate and sodium hydroxide. From the test result, the ALC using admixture have a good fundamental properties compared with plain specimen. Compressive strength, specific strength and abrasion's ratio were improved depending on increasing admixtures ratio's, and grain size.

  • PDF

A Study of Mechanical characteristics of functional Autoclaved Lightweight Concrete (기능성 경량기포콘크리트의 물리적 특성에 관한 실험적 연구)

  • Kim, Soon-Ho;Kim, Hong-Yong
    • KIEAE Journal
    • /
    • v.7 no.5
    • /
    • pp.121-126
    • /
    • 2007
  • This is the experimental study on the functional property of the light-weight concrete according to the mineral composite. According to the increase of the functional mineral, Autoclaved light-weight concrete (ALC) have a effect of high far infrared ray, deodorization, anion and change of chromaticity on D65 of light source. Compressive strength and change of specific gravity by foaming of Mixed Slurry in accordance with additive rates and Water. It chracterizes surface by SEM, chemical component and crystallization by XRD, XRF. the results of this experiment studied influences of ALC by functional minerals.

An Experimental Study on the Rheology Characteristics of Insulating Concrete (단열콘크리트의 레올로지 특성에 관한 실험적 연구)

  • Ryu, Dong-Woo;Ji, Suk-Won;Jeon, Hyun-Kyu
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.2
    • /
    • pp.118-124
    • /
    • 2016
  • The purpose of this study is to analyze the rheology characteristics of insulating concrete for each type of insulation performance improvement material and utilize the result as preliminary data for optimal flow designing and pumping analysis. As a result, when lightweight aggregate was mixed, the yield stress decreased significantly, and in case of type 2, the combination of micro form cell admixture (MFA) and calcined diatomite powder (DM) showed the most ideal flow characteristics. In case of type 3, the combination of micro form cell admixture (MFA), calcined diatomite powder (DM) and lightweight aggregate (L) showed the best flow characteristics.

An Experimental Study on Properties of Light-Weight Foamed Concrete Using the Waste Concrete Powder (폐콘크리트 미분을 사용한 경량기포콘크리트의 특성에 관한 실험적 연구)

  • Choi, Hun-Gug;Kim, Jae-Won;Seo, Jung-Pil;Lee, Jung-Goo;Kang, Cheol;Kim, Jin-Man
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2007.04a
    • /
    • pp.75-78
    • /
    • 2007
  • The recycling program about waste concrete is being progressed to national research. But research on waste concrete powder which is occurred in control process of concrete powder is not enough. Waste concrete powder includes in $SiO_2,\;Al_2O_3$, and CaO so that the create of tobermorite is possibile through Hydrothermal Syntesis Reaction. Tobermorite have an advantage of high strength, sulphuric acid resistance and the lower drying shrinkage. Accordingly, this study investigate in properties of light-weight foamed concrete made with waste concrete powder. As a results, light-weight foamed concrete made with waste concrete powder is the higher than stone powder sludge of density and porosity, and the tower compressive strength. Therefore, it is thought that light-weight foamed concrete using waste concrete powder is possible.

  • PDF