• Title/Summary/Keyword: 경량구조물

Search Result 279, Processing Time 0.024 seconds

Simulation and Experimental Study on the Impact of Light Railway Train Bridge Due to Concrete Rail Prominence (주행면 단차에 의한 경량전철 교량의 충격 시뮬레이션 및 실험)

  • Jeon, Jun-Tai;Song, Jae-Pil
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.1A
    • /
    • pp.45-52
    • /
    • 2010
  • This study pointed on the dynamic impact of AGT (Automated Guide-way Transit) bridge, due to concrete rail prominence. An experiment was done with 30 m P.S.C. bridge in AGT test line in Kyungsan. An artificial prominence with 10 mm hight, was installed at the mid span of concrete rail. And computer simulation was executed for the artificial prominence. As an experiment result, in the case of with prominence, bridge acceleration responses are increased 50% at the speed range of 20 km/h-60 km/h, and bridge displacement responses increased slightly. With these results, the prominence of concrete rail can be induce excess impact and vibration. And the computer program simulated much the same as experiments. So this program can be used for AGT bridge design and formulate the standard of concrete rail management.

Dynamic Load Factor for Floor Vibration due to Lively Concerts (공연하중에 의한 바닥진동 설계용 동하중계수)

  • Hong, Kap Pyo;Yoon, Kwang Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.6
    • /
    • pp.721-728
    • /
    • 2002
  • Modern structrues are being built using high-strength and light-weight construction materials resulting in decreased structural mass and damping properties. Rhythmic activities such as jumping, dancing and clapping during lively concerts can produce excessive vibration of steel structures. In this study, dynamic load factors that occur during lively concerts were presented through vibration test and real-time monitoring of an existing concert hall. The vibration test included modal analysis and jumping test according to the forcing frequencies and the number of participants. Dynamic load foactors were acquired directly from peak acceleration responses of each harmonics. Comparing NBCC 1995, the 3rd harmonic must be included in the design of concert halls. Dynamic load factors must be increased as a result of the vibration test.

Performance Enhancement of Floating PV Generation Structure Using FRP (FRP를 활용한 부유식 태양광발전 구조시스템의 성능 향상)

  • Choi, Jin-Woo;Joo, Hyung-Joong;Nam, Jeong-Hun;Hwang, Seong-Tae;Yoon, Soon-Jong
    • Composites Research
    • /
    • v.26 no.2
    • /
    • pp.105-110
    • /
    • 2013
  • In this study, we suggest the new floating PV generation structure which is improved the structural and economical efficiency compared with the system developed in the previous research. Pultruded FRP has superior physical and chemical material properties compared with those of conventional structural materials. Especially, pultruded FRP has an excellent corrosion-resistance, light-weight, and it also has high specific strength and stiffness which are highly appreciated for the design and fabrication of floating PV generation structure under harsh environmental condition. In this study, structural analysis using the finite element method has been performed to investigate the safety of new floating PV generation structure and newly applied structural members.

A Study on the Dynamic Instability Characteristics of Latticed Domes Under Sinusoidal Excitations (정현파 하중을 받는 래티스 돔 구조물의 동적 구조불안정 특성에 관한 연구)

  • Kim, Seung-Deog;Kang, Joo-Won;Jang, Je-Pil
    • Journal of Korean Association for Spatial Structures
    • /
    • v.12 no.2
    • /
    • pp.109-118
    • /
    • 2012
  • Few paper deal with the dynamic bucking under the load with periodic characteristics, and the behavior under periodic excitation is expected the different behavior against STEP excitation. A space frame structure has high stiffness with a structure resisting external forces in steric conformation. According to many structural conditions, structural stability problems in the space frame are determined and considered very important. This study seeks to understand the space frame collapse mechanism using the 2-free nodes truss model in order to examine static structural instability characteristics of the latticed dome. According to geometrical shape, the star dome, parallel lamella dome and three way grid dome were selected as models. The models were examined for characteristics of instability behavior according to rise-span ratio(${\mu}$) and shape imperfection.

An Analysis of the Uncertainty Factors for the Life Cycle Cost of Light Railroad Transit (경량전철 교량 LCC분석을 위한 불확실성 인자 분석)

  • Won, Seo-Kyung;Lee, Du-Heon;Kim, Kyoon-Tai;Kim, Hyun-Bae;Jun, Jin-Taek;Han, Choong-Hee
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2007.11a
    • /
    • pp.396-400
    • /
    • 2007
  • Various ways of automated guideway transit construction are being planned recently owing to the policies of the national government and local municipalities as well as increasing investment from the private sector. Particularly, the increase in the private investment is increasing greatly in SOC (Social Overhead Cost). This trend of promoting private sector investment must be conducted on the basis of a thorough analysis of the economic feasibility of the project from the government and construction companies in the private sector. In other words, an accurate cost analysis of initial investment cost (Construction cost), maintenance/repair cost, profit making through the operation of the concerned facilities, cost of dissolution, etc. in terms of the life cycle is very much in need. Nevertheless, the analysis of uncertainty factors and its probabilistic theory are in need of development so that they can be used in the analysis of the economic feasibility of a construction project. First of all, the actual studies on maintenance/repair cost of automated guideway transit are scarce as of yet, prohibiting an accurate computation of the cost and its economic analysis. Accordingly, this study focused on the uncertainty analysis of the economic feasibility for civil engineering structures among automated guideway transit construction projects based on the rapidly increasing investment on such structures from the private sector. For this research purpose, a cost classification system for the automated guideway transit is proposed, first of all, and the data On the cost cycle of the civil structure facilities and their unit cost are collected and analyzed. Then, the uncertainty in the cost is analyzed from the perspective of LCC. In consideration of the current status with almost no. studies on maintenance/repair of such facilities, it is expected that the cost classification system and the uncertainty analysis technique proposed in this study will greatly enhance LCC analysis and economic feasibility studies for automated guideway transit projects in the future.

  • PDF

Evaluation on Strain Properties of 60 MPa Class High Strength Concrete according to the Coarse Aggregate Type and Elevated Temperature Condition (60MPa급 고강도 콘크리트의 굵은골재 종류와 고온상태에 따른 변형특성 평가)

  • Yoon, Min-Ho;Choe, Gyeong-Cheol;Lee, Tae-Gyu;Kim, Gyu-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.3
    • /
    • pp.247-254
    • /
    • 2014
  • Strain properties of concrete member which acts as an important factor in the stability of the concrete structure in the event of fire, significantly affected the characteristics of the coarse aggregate, which accounts for most of the volume. For this reason, there are many studies on concrete using artificial lightweight aggregate which has smaller thermal expansion deformation than granite coarse aggregate. But the research is mostly limited on concrete using clay-based lightweight aggregate. Therefore, in this study, the high temperature compressive strength and elastic modulus, thermal strain and total strain, high temperature creep strain of concrete was evaluated. As a result, remaining rate of high-temperature strength of concrete using lightweight aggregate is higher than concrete with general aggregate and it is determined to be advantageous in terms of structural safety and ensuring high-temperature strength from the result of the total strain by loading and strain of thermal expansion. In addition, in the case of high-temperature creep, concrete shrinkage is increased by rising loading and temperature regardless of the type of aggregate, and concrete using lightweight aggregate shows bigger shrinkage than concrete with a granite-based aggregate. From this result, it is determined to require additional consideration on a high temperature creep strain in case of maintaining high temperature like as duration of a fire although concrete using light weight aggregate is an advantage in reducing the thermal expansion strain of the fire.

An Experimental Study of Material Characteristics for GFRP Pipes (GFRP 관로의 재료 특성에 관한 실험적 연구)

  • Han, Taek-Hee;Kim, Sung-Nam;Kang, Young-Jong;Yoon, Ki-Yong
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.4 no.2 s.13
    • /
    • pp.35-45
    • /
    • 2004
  • Recently, the composite material becomes more popular and its usage is kept expanding from aerospace to civil structures such as bridge decks and irrigation and drainage pipes. The major cause for the popularity can be found in its high strength, light, and excellent anticorrosive properties. Nevertheless the methods to accurately predict and analyze its structural behavior are extremely limited. This has been the major reason circumventing more prevalent use of the composite materials in civil structures. This study is a pre-study to develop the analyzing models for accurate prediction of the composite material structures. Thus, various tests were performed for GFRP pipes to estimate material characteristics of GFRP in this study. And stress-strain relation of GFRP was suggested as a bilinear relation.

Optimum Design of Viscoelastic Layered Beam to Minimize Flexural Vibration (굽힘진동 감쇠를 위한 점탄성 적층보의 최적 설계)

  • Sa-Soo Kim;Dae-Seung Cho;Min-Woo Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.36 no.1
    • /
    • pp.90-98
    • /
    • 1999
  • For the control of vibration and noise of metal structures having relatively low damping, viscoelastic materials are widely used and usually attached at metal structures with an additional constraining layer to secure them. The damping and elastic properties of structures having constrained viscoelastic material layers are dependent on not only temperature and frequency but also their thicknesses. Hence, optimal design of the thicknesses of viscoelastic and constraining layers for a certain base structure are very important to maximize their efficiency and to lighten their weight. In this study, the variation of loss factor of beams having a constrained viscoelastic layer according to the change of thickness has been carefully investigated. From these, optimal design method of the minimum thickness beam having a given loss factor is suggested and numerically verified for a real beam.

  • PDF

Impact Energy Absorbing Capability of Metal/Polymer Hybrid Sheets (금속/폴리머 접합강의 충격 특성에 대한 실험적 연구)

  • Kong, Kyungil;Kwon, O Bum;Park, Hyung Wook
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.2
    • /
    • pp.137-142
    • /
    • 2017
  • Recently, the reduction of vehicle weight has been increasingly studied, in order to enhance the fuel efficiency of passenger cars. In particular, the seat frame is being studied actively, owing to considerations of driver safety from external impact damage. Therefore, this study focuses on high strength steel sheet (SPFC980)/polymer heterojunction hybrid materials, and their performance in regards to impact energy absorption. The ratio of impact energy absorption was observed to be relatively higher in the SPFC980/polymer hybrid materials under the impact load. This was found by calculating the equivalent flexural rigidity, which is the bending effect, according to the Castigliano theorem. An efficient wire-web structure was investigated through the simulation of different wire-web designs such as triangular, rectangular, octagonal, and hexagonal structures. The hexagonal wire-web structure was shown to have the least impact damage, according to the simulations. This study can be utilized for seat frame design for passengers' safety, owing to efficient impact absorption.

A Study on the Standardized Finite Element Models for Carbody Structures of Railway Vehicle Made of Sandwich Composites (샌드위치 복합재 적용 철도차량 차체 구조물의 표준유한요소모델 제시 연구)

  • Jang, Hyung-Jin;Shin, Kwang-Bok;Ko, Hee-Young;Ko, Tae-Hwan
    • Journal of the Korean Society for Railway
    • /
    • v.13 no.4
    • /
    • pp.382-388
    • /
    • 2010
  • This paper describes the standardized finite element model for carbody structures of railway vehicle made of sandwich composites. Recently, sandwich composites were widely used to railway vehicle due to the improvement of energy efficiency, high specific stiffness and strength, weight reduction and space saving in korea. Therefore, structural integrity should be verified using finite element analysis prior to the manufacture of composite railway vehicle. The standardized finite element model for composite carbody structures was introduced through comparing the results of real structural test under vertical, compressive, twisting load and natural frequency test of various railway vehicles in this study. The results show that the quadratic shell element is suitable to model the reinforced metal frame used to improve the flexural stiffness of sandwich panel compared to beam element, and layered shell and solid element are recommended to model the skin and honeycomb core of sandwich panel compared to sandwich shell element. Also, the proposed standard finite element model has the merit of being applied to crashworthiness problem without modifications of finite element model.