• Title/Summary/Keyword: 경두개 직류 전류 자극

Search Result 19, Processing Time 0.027 seconds

Effects of Occupation-Based Bilateral Upper Extremity Training and Transcranial Direct Current Stimulation Upper Limb Function in Stroke Patients (작업기반 양측성 상지 훈련과 경 두개 직류 전류 자극이 뇌졸중 환자의 상지 기능에 미치는 영향)

  • Kim, Sun-Ho
    • The Journal of the Korea Contents Association
    • /
    • v.20 no.9
    • /
    • pp.520-530
    • /
    • 2020
  • The purpose of this study was to investigate the effects of occupation-based bilateral upper extremity training and transcranial direct current stimulation on upper limb function in stroke patients. The study group was divided into 13 experimental groups with occupation-based bilateral upper extremity training and transcranial direct current stimulation, and 13 controls with only occupation-based bilateral upper extremity training. A total of 4 weeks, 50 minutes, 5 times a week conducted, the patients were tested with Canadian Occupational Performance Measure(COPM), Accelerometer, Fugle-Meyer Assessment(FMA), and Motor Activity Log(MAL). As a result of the study, the experimental group and the control group showed significant improvement in both occupation satisfaction and performance, usage of the affected side and the tendon side, recovery of upper limb function, and quality of movement, In particular, the experimental group showed a significant difference in the amount of the affected side than the control group. Therefore, it was found that the combination of occupation-based bilateral upper extremity training and transcranial direct current stimulation had a positive effect on the recovery of upper limb function in stroke patients.

The Convergence Effect of Task-Oriented Training and Vibration Stimulation, Transcranial Direct Current Stimulation to Improve Upper Limb Function in Stroke (뇌졸중 환자의 상지기능 개선을 위한 과제 지향적 훈련과 진동 자극, 경두개 직류 전류 자극의 융합 효과)

  • Kim, Sun-Ho
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.9
    • /
    • pp.31-37
    • /
    • 2020
  • The purpose of this study was to investigate the Effect of transcranial direct current stimulation convergence task-oriented training combined with vibration stimulation on hand dexterity and upper limb function in stroke patients. One time 30 minutes 5 times a week for 4 weeks. experimental group of transcranial direct current stimulation convergence task-oriented training combined with vibration stimulation and control group of the task-oriented training combined with vibration stimulation were divided into 10 members. Hand dexterity and upper limb recovery were measured. The experimental group and the control group showed significant improvement in hand dexterity and grasping(p<.05), grasping, and gross movement(p<.05). The experimental group showed a significant improvement in hand dexterity and grasp and grip than the control group. Effect size showed more than small effect in all evaluation items. Based on the results of this study, it is considered that more effective and efficient rehabilitation treatment can be performed in the clinic.

Impact of Transcranial Direct Current Stimulation Combined With Constraint-Induced Movement Therapy on Upper Limb Function in Chronic Stroke: A Systematic Review (뇌졸중 환자의 상지기능 향상을 위한 경두개 직류 자극과 강제 유도 운동 치료의 결합 중재 효과에 대한 체계적 고찰)

  • Kim, Sun-Ho
    • Therapeutic Science for Rehabilitation
    • /
    • v.8 no.4
    • /
    • pp.7-18
    • /
    • 2019
  • Objective : This systematic review aimed to investigate the impact of transcranial direct current stimulation combined with constraint-induced movement therapy (CIMT) in patients with stroke Methods : PubMed and NDSL databases were employed to review literature published between January 2009 and December 2018. The main search terms were "Transcranial direct current stimulation" or "tDCS," "Constraint-induced movement therapy" or "CIMT," "Upper extremity function," "Upper limb," and "Stroke." Based on the inclusion and exclusion criteria, 6 articles were selected. Furthermore, intervention effects on upper extremity function, activities of daily living, and cortical activity were assessed. Results : The current intensity, application time, and protocol of the CIMT varied the between studies. However, the intervention procedures to perform CIMT immediately after transcranial direct current stimulation was the same. Transcranial direct current stimulation combined with CIMT was effective in improving upper limb function and activities of daily living in patients with stoke and had a significant effect on cerebral cortex activation. Conclusions : This study provides information on transcranial direct current stimulation combined with CIMT for use by clinical therapists. Further studies are needed to standardize the stimulation time, current intensity, and electrode attachment position. Furthermore, randomized controlled trials, including long-term follow up, are needed for larger populations using the most appropriate CIMT protocol.

The Effect of Transcranial Direct Current Stimulation over the Primary Somatosensory Cortex in Patients with Chronic Stroke on Somatosensory and Upper Limb Function for Improving Life Care (만성 뇌졸중 환자를 대상으로 한 일차 체성 감각 피질을 자극한 경두개 직류 전류 자극이 라이프 케어 증진을 위한 체성감각과 상지기능에 미치는 영향)

  • Kim, Sun-Ho
    • Journal of Korea Entertainment Industry Association
    • /
    • v.14 no.6
    • /
    • pp.269-277
    • /
    • 2020
  • The purpose of this study is to investigate the recovery of sensation and the restoration of upper limb function according to transcranial direct current stimulation over the primary somatosensory cortex in patients with chronic stroke with sensory deficit. 20 patients with chronic stroke divided into 10 experimental groups and 10 control groups. Patients received transcranial direct current stimulations over the primary somatosensory cortex on the side of the stroke lesion, and The control group applied sham tDCS to the same location. Intervention was conducted 5 times a week, 20 minutes per session for a total of 2 weeks. Assessment was performed using the Erasmus MC modifications to the Nottingham Sensory Assessment(EmNSA), Semmes-Weinstein monofilament examination(SWME) for somatosensory, and Fugle-Meyer Assessment(FMA), Motor Activity Log(MAL), and accelerometer for upper extremity function. Assessment was conducted before and after the intervention. As a result of the study, the experimental group showed a significant improvement in the overall tactile sense, proprioception, cortical sense, and perception sensitivity than the control group, and showed a statistically significant difference in the usage amount of the upper limb. Based on the results of this study, it is thought that the possibility of effective clinical application of transcranial direct current stimulation for recovery of somatosensory and upper extremity function is thought to be increased.

The Application of Brain Stimulation in Psychiatric Disorders : An Overview (정신질환에서 뇌자극술의 적용)

  • Roh, Daeyoung;Kang, Lee Young;Kim, Do Hoon
    • Korean Journal of Biological Psychiatry
    • /
    • v.24 no.4
    • /
    • pp.167-174
    • /
    • 2017
  • Based on advances in biotechnology and neuroscience, neuromodulation is poised to gain clinical importance as a treatment modality for psychiatric disorders. In addition to old-established electroconvulsive therapy (ECT), clinicians are expected to understand newer forms of neurostimulation, such as deep brain stimulation (DBS), vagus nerve stimulation (VNS), repetitive transcranial magnetic stimulation (rTMS), transcranial direct current stimulation (tDCS) and transcranial alternating current stimulation (tACS). Given the growing interest in non-invasive neuromodulation technologies, clinicians may seek sufficient information about neuromodulation to inform their clinical practice. A growing literature suggests that applications of non-invasive neuromodulation have evidence particularly for indications where treatments are currently insufficient, such as drug-resistant depression. However, positive neuromodulation studies require replication, and the precise interactions among stimulation, antidepressant medication, and psychotherapy are unknown. Further studies of long-term safety and the impact on the developing brain are needed. Non-invasive neuromodulatory devices could enable more individualized treatment. However, do-it-yourself (DIY) stimulation kits require a better understanding of the effects of more frequent patterns of stimulation and raise concerns about clinical supervision, regulation, and reimbursement. Wide spread enthusiasm for therapeutic potential of neuromodulation in clinical practice settings should be mitigated by the fact that there are still research gaps and challenges associated with non-invasive neuromodulatory devices.

Review : Effectiveness of transcranial direct current stimulation in rodent models of Alzheimer's disease (알츠하이머병 쥐 모델에서 경두개 직류 전기자극의 효용성 검토)

  • Kim, Ji-Eun;Park, Ye-Eun;Jeong, Jin-Hyoung;Lee, Sang-Sik
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.14 no.5
    • /
    • pp.403-412
    • /
    • 2021
  • Alzheimer's disease (AD) is the most common cause of dementia, showing progressive neurodegeneration. Although oral medications for symptomatic improvement still take a huge part of treatment, there are several limitations caused by pharmacology-based real world clinic. In this respect, non-pharmacologic treatment for AD is rising to prominence. Transcranial direct current stimulation (tDCS) is a one of the non-invasive neuromodulation technique, using low-voltage direct current. In terms of safety, tDCS already has been proven through numerous previous reports. This review focused on behavioral, neurophysiologic and histopathologic improvement by applying tDCS in AD rodent models, thereby suggesting reliable background evidence for human-based tDCS study.

Changes in the Sensory Function after Transcranial Direct Stimulation on Dorsolateral Prefrontal Cortex Area (배외측전전두엽피질 영역에 경두개직류전류자극이 감각기능에 미치는 영향)

  • Min, Dong-Ki
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.1
    • /
    • pp.445-452
    • /
    • 2015
  • Transcranial direct current stimulation (tDCS) is a neuromodulatory technique that delivers a low-intensity direct current to the cortical areas, thereby facilitating or inhibiting spontaneous neuronal activity. This study was designed to examine the changes in various sensory functions after tDCS. A single-center, single-blinded, randomized trial was conducted to determine the effect of a single session (August 4 to August 29) of tDCS with the current perception threshold (CPT) in 50 healthy volunteers. Nerve conduction studies (NCS) were performed in relation to the median sensory and motor nerves on the dominant hand to discriminate peripheral nerve lesions. The subjects received anodal tDCS with 1mA for 15 minutes under two different conditions, with 25 subjects in each group. The conditions were as follows: tDCS on the dorsolateral prefrontal cortex (DLPFC) and sham tDCS on DLPFC. The parameters of the CPT was recorded with a Neurometer$^{(R)}$ at frequencies of 2000, 250 and 5 Hz in the dominant index finger to assess the tactile sense, fast pain and slow pain, respectively. In the test to measure the CPT values of the DLPFC in the anodal tDCS group, the values increased significantly in all of 250 and 5 Hz. All CPT values decreased for the sham tDCS. These results showed that DLPFC anodal tDCS can modulate the sensory perception and pain thresholds in healthy adult volunteers. This study suggests that tDCS may be a useful strategy for treating central neurogenic pain in rehabilitation medicine.

Effect of Transcranial Direct Current Stimulation on University Student's Attention (경두개직류전류자극이 대학생의 집중력에 미치는 영향)

  • Oh, Myung Hwa;Lee, Eun Sang
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.9
    • /
    • pp.127-132
    • /
    • 2019
  • This study examined the change in the attention of University students after being given Transcranial Direct Current Stimulation (tDCS). The participants were divided randomly into two group (tDCS vs. Control). tDCS was applied to 37 university students ($23.08{\pm}3.33years$). The tDCS group was applied 2 mA, for 13 minutes twice over a 26 minute period ($n_1=19$). The control ($n_2=18$) was not applied after padding and was applied twice for 13 minutes over a 26 minute period. This study was conducted from September 3 to 28, 2018 and three times a week for a total of four weeks. The electroencephalogram was confirmed to affect attention. tDCS showed significant improvement in the results in the sensory motor rhythm wave (p<0.01, 95% CI: -1.955, -0.459), middle beta wave (p<0.05; 95% CI: 0.027, 0.943), and power ratio (p<0.01, 95% CI: -1.764, -0.315). The results showed that tDCS application increased the attention ability significantly. These results can be applied to attention deficit disorder (ADHD) patients and college students.

Cortical Activation in the Human Brain induced by Transcranial Direct Current Stimulation (경두개 직류전류 자극이 대뇌피질의 뇌 활성도에 미치는 영향)

  • Kwon, Yong-Hyun;Kim, Chung-Sun;Jang, Sung-Ho
    • The Journal of Korean Physical Therapy
    • /
    • v.21 no.4
    • /
    • pp.73-79
    • /
    • 2009
  • Purpose: Recently, neurostimulation studies involving manipulation of cortical excitability of the human brain have been increasingly attempted. We investigated whether transcranial direct current stimulation (tDCS) applied to the underlying cerebral cortex, directly induces cortical activation during fMRI scanning. Methods: We recently recruited five healthy subjects without a neurological or psychiatric history and who were right-handed, as verified by the modified Edinburg Handedness Inventory. fMRI was done while constant anodal tDCS was delivered to the underlying SM1 area?? immediately after the pre-stimulation for eighteen minutes. Results: Group analysis yielded an averaged map that showed that the SM1 area and the superior parietal cortex in the ipsilateral hemisphere were activated. The voxel size and peak intensity were, respectively, 82 and 5.22 in the SM1, and 85 and 5.77 in the superior parietal cortex. Conclusion: Cortical activation can be induced by constant anodal tDCS of the underlying motor cortex. This suggests that tDCS may be an effective therapeutic device for enhancing? physical motor function by modulating neural excitability of the motor cortex.

  • PDF

The Effect of Transcranial Direct-Current Stimulation on Cognitive Function and Depression in Stroke Patient's through a Computerized Cognitive Rehabilitation Program (경두개 직류전류자극과 전산화 인지재활 프로그램이 뇌졸중 환자의 인지기능 및 우울감에 미치는 영향)

  • An, Taegyu;Kwon, Hyukchul
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.7 no.3
    • /
    • pp.33-40
    • /
    • 2019
  • Purpose : The purpose of this randomized controlled trial study was to examine the effect of transcranial direct current stimulation (tDCS) on cognitive function and depression in stroke patients. Methods : Thirty stroke patients were randomly divided into an experimental group (n = 15) and a control group (n = 15). The experimental group received tDCS while performing computerized cognitive rehabilitation programs, and the control group was provided with sham tDCS while operating the same programs. The 30-minute intervention was implemented five times per week for six weeks. To assess cognitive function before and after the intervention, the Neurobehavioral Cognitive Status Examination was conducted; the Beck Depression Inventory BDI was employed to assess depression. Results : The experimental group showed statistically significant increases in cognitive function and decreases in depression (p < .05 ). Comparing the amount of variation between the groups after arbitration also showed significant differences in cognitive function and depression between the two groups (p > .05). Conclusion : The application of tDCS and computerized cognitive rehabilitation programs for stroke patients may positively affect their cognitive function and depression. Therefore, tDCS used with computerized cognitive rehabilitation programs is positively applicable to the enhancement of cognitive function in stroke patients and reduction of depression.