• 제목/요약/키워드: 경계 박스

검색결과 41건 처리시간 0.026초

U-Net 구조를 이용한 이미지에서의 보행자 분할 (Pedestrian Segmentation Using U-Net)

  • 김승택;이효종
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2019년도 춘계학술발표대회
    • /
    • pp.519-521
    • /
    • 2019
  • 자율주행 자동차에서의 보행자 인식 및 사람의 행동 인식과 같은 분야 등에 대한 연구들이 활발하게 진행되고 그에 기반을 둔 기술들이 많이 개발되고 있다. 그리고 대부분의 연구에서는 사람에 대한 경계 박스를 검출한다. 영상에서 사람의 유무 혹은 위치를 판단하는 문제에서는 경계 박스만을 검출하는 것이 효율적일 수 있으나 경계 박스는 행동 인식과 같은 분야에 사용하기에는 많은 정보의 손실이 발생할 수 있다. 본 논문에서는 U-NET 구조의 딥러닝 모델을 사용해 경계 박스로 인한 정보 손실을 줄일 수 있는 보행자 분할 방법을 제안한다. 모델의 학습을 위해 2017 COCO 데이터셋의 사람 카테고리를 사용하였으며 Penn-Fudan 보행자 데이터셋을 이용하여 제안 방법을 테스트하였으며 기존의 방법들과 비교하여 의미 있는 결과를 얻었다.

회전 경계박스 기능의 변형 FASTER R-CNN 딥러닝 알고리즘을 이용한 암석 CT 영상 내 자동 균열 탐지 (Automatic Fracture Detection in CT Scan Images of Rocks Using Modified Faster R-CNN Deep-Learning Algorithm with Rotated Bounding Box)

  • 추엔 팜;장리;염선;신휴성
    • 터널과지하공간
    • /
    • 제31권5호
    • /
    • pp.374-384
    • /
    • 2021
  • 본 논문에서는 암석시료의 CT 촬영 이미지상의 균열을 자동으로 탐지하는 새로운 인공지능 딥러닝 기법을 제안한다. 본 제안 기법은 2단계 딥러닝 객체인식 알고르즘인 Faster R-CNN을 기반으로 회전 가능한 경계박스(bounding box) 개념을 도입하여 알고리즘을 개조하였다. 회전 경계박스의 도입은 관심 균열 영역 밖의 배경의 불균질성 및 균열의 크기와 형태에 영향을 받는 딥러닝 객체인식기법 상의 고유한 어려움을 극복하기 위한 핵심 역할을 한다. 본 회전형 경계박스의 사용은 일반적으로 사용되는 영상 수평축과 평행한 경계박스 사용의 경우와 비교하여 긴 형태의 균열 형상 특성에 매우 잘 부합된다. 즉, 좋지않은 영향을 끼치는 경계박스 내 균열 이외 배경영역의 비율을 최소화 시킬 수 있다. 이외에도, 회전 경계박스의 추가적인 이점은 인식된 균열의 방향에 따라 회전하여 추론되는 경계박스를 통해 균열의 방향과 길이에 대한 정보를 직접적으로 얻을 수 있다. 본 제안기법의 적용성을 검증하기 위하여, 이미지상에서 매우 불균질한 화강암 시료에 인공적으로 균열을 발생시킨 다수의 암석시료 영상을 딥러닝 학습에 사용하고 추론 성능 실험을 진행하였다. 그 외에도, 동일 조건에서 사암과 셰일 암석 시료에도 적용하여 검증하였다. 결론적으로, 제안된 기법을 통해 균열 객체 인식의 평균 추론정확도(mAP)값이 0.89 정도 수준의 우수한 추론 성능을 보였으며, 기존 기법에 비해 추론된 경계박스 내 균열과 배경 영역의 비율 측면에서 배경의 비율이 획기적으로 최소화되는 유리한 추론 검증 결과를 보였다.

셋톱박스 품질검사를 위한 개선된 지역 방향 패턴(eLDP) 기반의 비디오 샷 경계 검출 (Video Shot Boundary Detection based on Enhanced Local Directional Pattern(eLDP) for Set-top Box Quality Control)

  • 조영탁;안기옥;김민기;이태원;송기훈;채옥삼
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2017년도 추계학술발표대회
    • /
    • pp.957-960
    • /
    • 2017
  • 디지털 비디오의 발전이 가속됨에 따라, 비디오 샷 경계 검출은 비디오 분석 및 카타로깅 등 여러 분야에 있어 필수적인 요소가 되었다. 기존 샷 경계 검출 방법들은 잠음이나 카메라 혹은 물체의 이동, 그리고 색상의 급격한 변화 등에 민감한 성능을 보인다. 본 논문에서는 개선된 지역 방향 패턴 기반(eLDP) 검출 방법을 제안한다. 제안하는 방법은 RGB 색상의 일부와 eLDP의 특징을 결합해 더욱 강인한 샷 경계 검출 성능을 보였다. 또한, 셋톱박스 품질검사 시 필요한 채널 간 동기화의 신뢰성을 높였고, 실시간으로 검사하면서도 안정적인 샷 경계 검출이 가능함을 입증하였다.

보강 박스 구조물의 진동 및 응력 해석 (Vibration and Stress Analysis of Stiffened Box Structure)

  • 이영신;한재도;한유희;서정
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1994년도 추계학술대회논문집; 한국종합전시장, 18 Nov. 1994
    • /
    • pp.111-115
    • /
    • 1994
  • 본 연구에서는 보강 되지 않은 사각단면 박스 구조물, 보강된 사각 단면 박스 구조물, 그리고 보강된 요철형 단면 박스 구좀ㄹ에 대하여 양단 고정(clamped-clamped)과 일단 고정 타단 자유(clamped-free)의 경계 조건에 대해 실험적 진동 해석을 수행 하였으며, 유한요소 code인 ANSYS를 이용하여 유한 요소 해석을 수행하였다. 또한 유한 요소 해석과 실험을 통하여 신뢰성이 검증된 요소를 각 박스 구조물에 적용하여 각 경우에 대한 응력해석을 유한요소법을 이용하여 수행하였다. 또한 각각의 경우에 보강재의 개수 및 단면 형상 변화, 그리고 두께 변화가 진동과 응력에 미치는 민감도를 연구하였다.

  • PDF

무감독 SVM 분류 기법을 통한 드론 영상 경계 박스 내 차량 자동 추출 연구 (A Study on Automatic Vehicle Extraction within Drone Image Bounding Box Using Unsupervised SVM Classification Technique)

  • 염준호
    • 토지주택연구
    • /
    • 제14권4호
    • /
    • pp.95-102
    • /
    • 2023
  • 도시 지역에서 객체를 탐지하기 위해 드론 고해상도 영상에 기계 학습 알고리즘을 적용하는 다양한 연구가 진행되었다. 그러나 대부분의 차량 추출 연구는 인스턴스 세그멘테이션 대신 경계 박스로 차량을 탐지하여 차량의 방향이나 정확한 경계를 알 수 없다는 한계점이 있다. 인스턴스 세그멘테이션은 개별 개체를 훈련하기 위한 노동 집약적인 레이블링 작업을 필요로 하므로, 차량 추출을 위해 자동 무감독 인스턴스 세그멘테이션을 수행하는 방법에 대한 연구가 필요하다. 따라서 본 연구에서는 드론 영상의 차량 경계 박스에 대해 무감독 SVM 분류 기반의 차량 추출 기법을 제안하였다. 연구 결과, 차량을 89% 정확도로 추출할 수 있음을 확인하였으며 차량 내의 분광 특성이 크게 다른 경우에도 차량을 추출할 수 있음을 확인하였다.

블랙박스 영상용 자동차 번호판 인식을 위한 최소 자승법 기반의 번호판 영상 이진화 알고리즘 (A License-Plate Image Binarization Algorithm Based on Least Squares Method for License-Plate Recognition of Automobile Black-Box Image)

  • 김진영;임종태;허서원
    • 한국정보통신학회논문지
    • /
    • 제22권5호
    • /
    • pp.747-753
    • /
    • 2018
  • 자동차 블랙박스 영상용 자동차 번호판 인식 시스템에서는 수시로 변하는 도로 주변의 외부 환경에 의해 자동차 번호판에 그림자가 존재하는 경우가 많이 발생한다. 이러한 그림자는 번호판의 문자와 숫자의 개별 문자 분할 과정에서 예상하지 않은 오류를 발생시키게 되고, 그 결과 전체적인 자동차 번호판 인식률을 저하시킨다. 본 논문에서는 이러한 환경에서 번호판 인식률을 높이고자, 번호판의 그림자를 효과적으로 제거하는 번호판 영상 이진화 알고리즘을 제안한다. 제안한 방법에서는 그림자의 경계를 기준으로 그림자가 드리운 영역과 드리우지 않은 영역으로 분할하는데, 그림자의 경계를 찾기 위해 최소 자승법을 사용하여 그림자 경계선에 대한 곡선을 추정한다. 그림자가 존재하는 자동차 번호판의 영상에 대해 시뮬레이션을 수행하였으며, 그 결과 기존 알고리즘 보다 훨씬 높은 인식률을 보임을 확인하였다.

SSD 알고리즘 기반 MI-FL을 적용한 회전 불변의 다중 객체 검출 시스템 구현 (Implementation of Rotating Invariant Multi Object Detection System Applying MI-FL Based on SSD Algorithm)

  • 박수빈;임혜연;강대성
    • 한국정보기술학회논문지
    • /
    • 제17권5호
    • /
    • pp.13-20
    • /
    • 2019
  • 최근 CNN을 기반으로 한 객체 검출 기술의 연구가 활발하다. 객체 검출 기술은 자율주행차, 지능형 영상분석 등에서 중요한 기술로 사용된다. 본 논문에서는 CNN 기반의 객체 검출기 중 하나인 SSD(Single Shot Multibox Detector)에 MI-FL(Moment Invariant-Feature Layer)을 적용하여 회전 변형에 강인한 객체 검출 시스템을 제안한다. 먼저 VGG 네트워크를 기반으로 입력 이미지의 특징을 추출한다. 그 후 총 6개의 특징 계층(Feature layer)을 적용하여 객체의 위치 정보와 종류를 예측해 경계 박스들을 생성한다. 그 후 NMS 알고리즘을 이용해 가장 객체일 확률이 높은 경계 박스를 얻는다. 하나의 객체 경계 박스가 정해지면 MI-FL을 이용해 해당 영역의 불변 모멘트 특징을 추출하여 미리 저장하고 학습한다. 이후 검출 과정에서 미리 저장해둔 불면모멘트 특징 정보를 이용해 검출함으로써 회전된 이미지에 대해 기존 방법보다 더 강인한 검출이 가능하다. 기존의 SSD와 MI-FL을 적용한 SSD의 비교를 통해 약 4~5%의 성능 향상을 확인하였다.

물체 탐지 알고리즘을 활용한 블랙박스 영상 내 사고 위험 감지 시스템 (The Accident Risk Detection System in Dashcam Video using Object Detection Algorithm)

  • 홍진석;한명우;김정선;김경섭
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2018년도 추계학술대회
    • /
    • pp.364-368
    • /
    • 2018
  • 본 논문에서는 물체 탐지 알고리즘 중 하나인 Faster R-CNN과 컴퓨터 비전을 목적으로 한 프로그래밍 라이브러리인 OpenCV를 사용하여 차선 변경이 가능한 고속도로나 국도, 일반 도로 등의 블랙박스 영상에서 다른 차량이 자신의 차선으로 차선 변경을 시도할 때 위험을 감지 할 수 있는 시스템을 구현하였다. 또한, 구현한 시스템의 성능을 평가하여 성능이 나쁘지 않음을 증명하였다.

  • PDF

유한대판법에 의한 복합적층절판의 해석 (FINITE STRIP ANALYSIS OF FOLDED LAMINATED COMPOSITE PLATES)

  • 윤석호;한성천;장석윤
    • 한국강구조학회 논문집
    • /
    • 제13권1호
    • /
    • pp.41-52
    • /
    • 2001
  • 본 연구에서는 복합재료로 구성된 구조물로서 박스거더와 같이 임의의 각도로 연결된 절판을 유한대판법으로 해석하였다. 각 적층판의 강성으로부터 적분에 의하여 판두께 방향의 전체 강성을 구하고 최소 포텐샬 에너지 이론으로부터 구한 평형방정식에 대입하여 전체 강성매트릭스를 구하였다. 슬래브나 박스거더의 변위 함수는 횡 방향의 Hermite 다항식과 종 방향의 조화함수의 결합으로 가정하였다. 종 방향 조화함수는 단부의 경계조건을 만족시키는 함수를 사용하였다. 해석시간의 단축 및 모델링이 쉽다는 장점을 가진 유한대판법은 복합적층 재료로 구성된 박스거더와 같은 절판해석의 경우에도 매우 정확한 해를 얻을 수 있다.

  • PDF

YOLOv5 학습 시 바운딩 박스 개수에 따른 화재 탐지 성능 비교 (Comparison of Fire Detection Performance according to the Number of Bounding Boxes for YOLOv5)

  • 성영아;이현섭;장시웅
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2022년도 추계학술대회
    • /
    • pp.50-53
    • /
    • 2022
  • YOLOv5에서 객체 탐지를 위해 이미지를 학습 시 기존의 이미지에 위치 정보를 어노테이션 하는 과정이 필요한다. 가장 대표적인 방법이 이미지에 바운딩 박스를 그려 위치 정보를 메타정보로 저장하게 하는 것이다. 하지만 객체의 경계가 모호한 경우 바운딩 박스를 하는 것에 어려움을 겪게 된다. 그 대표적인 예시가 화재인 부분과 화재가 아닌 부분을 분류하는 것이다. 따라서 본 논문에서는 화재가 났다고 판단되는 샘플 100개의 이미지를 바운딩 박싱 개수를 달리하여 학습시켜 보았다. 그 결과 바운딩 박스를 어노테이션 시 가장자리를 가능한 크게 잡아 하나의 박스로 어노테이션하는 것보다 조금 더 세분화 하여 박스 3개로 어노테이션하여 학습시킨 모델에서 더 뛰어난 화재 탐지 성능을 보여주었다.

  • PDF