• Title/Summary/Keyword: 경계흡수

Search Result 201, Processing Time 0.022 seconds

Analysis of Waveguid Filter Using Green′s Absorbing Layer in three Dimension TLM Method (3차원 TLM 법에서 그린 흡수층을 이용한 도파관 필터의 해석)

  • 김병수;전계석
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.5 no.5
    • /
    • pp.1001-1010
    • /
    • 2001
  • In TLM method, Discrete Green's function ABC have been used when improved the exactness of analyzing in wide frequency band. But this technology has a complicated process to apply absorbing boundary, which means it needs additional numerical analyzing process to obtain discrete Green's function data. so, In this paper, we propose new Green's absorbing layer for simple process to apply absorbing boundary. newly proposed Green's absorbing layer is produced by applying of loss operation, loading discrete Green's function with attenuation. A state of optimum absorbing would be obtained by relation between increasing rate of loss, attenuation constant and length of green's absorbing layer. and then Analysts of waveguide BPF is carried out using Green's absorbing layer within state of optimum absorbing, then this result is in corrective agreement with the result applying traditional discrete Green's function ABC.

  • PDF

Comparisons between UPML and Liao's ABC in the FDTD method for 2D Cylindrical Coordinates (2D 원통형 좌표계를 위한 FDTD 방법에서 UPML과 Liao 흡수경계조건의 비교)

  • Hong, Ic-Pyo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.6
    • /
    • pp.1054-1061
    • /
    • 2007
  • In this paper, the comparison between UPML and Liao's absorbing boundary condition in the FDTD(Finite-Difference Time-Domain) method was performed for the analysis of the 2D cylindrical coordinate system. Generally, it is known as the absorbing characteristics of the UPML is bro than Liao's absorbing boundary condition in the 2D rectangular coordinate. The simulation results in this paper showed that Liao's original absorbing boundary condition is better than other two absorbing boundary conditions, Liao's modified condition and UPML. We concluded that more numerical, theoretical studies, simulations and verifications for various absorbing boundary conditions will be needed to get more accurate results for the design of useful 2D cylindrical microwave circuits.

Finite Element Analysis with Paraxial Boundary Condition (파진행 문제를 위한 Paraxial 경계조건의 유한요소해석)

  • Kim, Hee-Seok;Lee, Jong-She
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.3
    • /
    • pp.303-309
    • /
    • 2007
  • For the propagation of elastic waves in unbounded domains, absorbing boundary conditions at the fictitious numerical boundaries have been proposed. In this paper we focus on both first and second order paraxial boundary conditions(PBCs) in the framework of variational approximations which are based on paraxial approximations of the scalar and elastic wave equations. We propose a penalty function method for the treatment of PBCs and apply these into finite element analysis. The numerical verification of the efficiency is carried out through comparing PBCs with Lysmer-Kuhlemeyer's boundary conditions.

A Study on Improving the Capacity of Absorbing Boundary Using Dashpot (점성감쇠기를 이용하는 흡수경계의 성능 향상에 관한 연구)

  • Kim, Hee-Seok;Lee, Jong-Seh
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.5
    • /
    • pp.629-640
    • /
    • 2007
  • In this paper an analytical study is carried out to improve the capacity of absorbing boundary using dashpot, one of the most widely used absorbing boundaries in FEM. Using 2-D harmonic plane wave equation, absorbing boundary condition is modified to maximize its capacity according to the incident angle. Validity of the absorbing boundary conditions which is modified is investigated by adopting the solution of Miller and Pursey. The Miller and Pursey's problem is then numerically simulated using the finite element method. The absorption ratios are calculated by comparing the displacements at the absorbing boundary to those at the free field without the absorbing boundary. The numerical study is carried out through comparison of displacement at the interior region and the boundary of the numerical model.

Open Boundary Modeling for Fully Nonlinear Wave Simulation in a 3-D Numerical Wave Tank (3-D 수치 파수조에서 비선형파 시뮬레이션을 위한 방사경계조건의 모델링)

  • Boo, Sung-Youn
    • Journal of Ocean Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.99-106
    • /
    • 1998
  • 3차원 파수조에서 완전 비선형파를 시뮬레이션하기 위하여 우선 랜킨 소스를 기저로한 적분방정식을 고차경계요소법을 이용하여 이산화하였다. 그리고 방사경계조건은 파흡수 비치와 포텐셜 스트레칭 기법을 이용하여 모델링하였으며, 비선형 자유표면과 경계조건식은 고차 예측 및 보정 기법을 이용하여 시간 적분하였다. 파흡수 비치는 파의 진행방향 특성에 따라 수조내에 다양하게 배치할 수 있으며 비칭서 흡수가 덜된 파는 수조의 길이 방향 끝단에서 포텐셜 스트레칭 기법에 의하여 반사없이 진행하도록 하였다. 수치실험 결과 일-에너지 보존법칙과 모멘텀-임펄스 보존 법칙이 만족됨으로써 본 수치기법의 효용성이 검증되었다.

  • PDF

Boundary conditions for Time-Domain Finite-Difference Elastic Wave Modeling in Anisotropic Media (이방성을 고려한 시간영역 유한차분법 탄성파 모델링에서의 경계조건)

  • Lee, Ho-Yong;Min, Dong-Joo;Kwoon, Byung-Doo;Lim, Seung-Chul;Yoo, Hai-Soo
    • Geophysics and Geophysical Exploration
    • /
    • v.11 no.2
    • /
    • pp.153-160
    • /
    • 2008
  • Seismic modeling is used to simulate wave propagation in the earth. Although the earth's subsurface is usually semi-infinite, we cannot handle the semi-infinite model in seismic modeling because of limited computational resources. For this reason, we usually assume a finite-sized model in seismic modeling. In that case, we need to eliminate the edge reflections arising from the artificial boundaries introducing a proper boundary condition. In this study, we changed three kinds of boundary conditions (sponge boundary condition, Clayton and Engquist's absorbing boundary condition, and Higdon's transparent boundary condition) so that they can be applied in elastic wave modeling for anisotropic media. We then apply them to several models whose Poisson's ratios are different. Clayton and Engquist's absorbing boundary condition is unstable in both isotropic and anisotropic media, when Poisson's ratio is large. This indicates that the absorbing boundary condition can be applied in anisotropic media restrictively. Although the sponge boundary condition yields good results for both isotropic and anisotropic media, it requires too much computational memory and time. On the other hand, Higdon's transparent boundary condition is not only inexpensive, but also reduce reflections over a wide range of incident angles. We think that Higdon's transparent boundary condition can be a method of choice for anisotropic media, where Poisson's ratio is large.

FEM Boundary Matching Using Anisotropic Absorber (비등방성 흡수체를 이용한 유한요소법 경계정합)

  • Jang, Young-Choon;Jang, Sung-Hoon;Cheon, Chang-Yul
    • Proceedings of the KIEE Conference
    • /
    • 1997.07e
    • /
    • pp.1883-1886
    • /
    • 1997
  • 3차원 유한요소법에 정합 조건을 구현하기 위해 유한한 두께를 갖는 흡수체을 이용하였다. 흡수체는 자유공간과의 경계에서 모든 입사각에 대해 무반사특성을 갖으며, 일단 흡수체 내로 전파된 파는 흡수체의 끝에 도달하기 전에 흡수체를 통과하면서 충분히 손실되도록 하였다. 이러한 흡수체는 ${\varepsilon}_r$${\mu}_r$에 비등방복소주대각텐서를 사용하여 구현된다. 구현된 흡수체층은 구형도파관에 적용하여, 전파상수를 이용하여 정합시킨 경우와 결과를 비교하였다.

  • PDF

Comparison with SAR Patterns of Biological Objects Contacted with Coaxial Waveguide Antenna Using MUR and GPML ABCs in the FDTD Method (유한차분법에서 MUR과 GPML 흡수경계조건을 이용한 동축 도파관 안테나에 접촉된 생체의 SAR 패턴 비교)

  • 구성모;권광희;이창원;원철호;조진호
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.9 no.2
    • /
    • pp.149-158
    • /
    • 1998
  • The SAR patterns of biological objects contacted with coaxial waveguide antennal has been investigated, in which the biological object was modeled by a homogeneous and four-layered lossy human body. We derived the finite-difference time-domain(FDTD) algorithm and equation of MUR and generalized perfectly matched layer(GPML) ABCs in cylindrical coordination. The coupling between coaxial waveguide antenna and a biological object was analyzed by use of MUR and GPML ABCs in the FDTD method to obtain the absorbed power patterns in the media. The specific absorption rates (SAR) distribution which was corresponding to the temperature distribution was calculated in each region by use of the steady-state response in the FDTD method. The SAR patterns of the FDTD method using MUR absorbing boundary conditions(ABCs) was compared with those of the FDTD method using GPML ABCs. The comparison exhibits that the penetration depth of the SAR patterns using MUR ABCs is deeper than that of the SAR patterns using GPML ABCs because of loss in free space. However, the spread in the lateral directions of the SAR patterns using GPML ABCs is smaller than of the SAR patterns using MUR ABCs.

  • PDF

Kakao Entertainment's Contents Dominant Strategy : Focusing on Absorptive Capacity and Boundary Spanning (카카오엔터테인먼트의 콘텐츠 지배 전략 : 흡수역량과 경계관리 활동을 중심으로)

  • Kwon, Sang-Jib
    • Journal of Korea Entertainment Industry Association
    • /
    • v.15 no.5
    • /
    • pp.33-43
    • /
    • 2021
  • Kakao M and Kakao page have been merged to form contents corporation, Kakao entertainment. Kakao M has 15 contents management agencies and 4 music labels, in addition to movie and drama productions. Kakao Page currently holds IP rights for about 8,500 content stories. This study explores the relationship between M&A for absorptive capacity and content value chain by considering the factors that determine boundary spanning behaviors. Using the Kakao entertainment in-depth case study as the practical lens, research results of this study are suggested. Kakao's effective M&A activities are critical key factor for absorptive capacity in the entertainment industry and has a strong network with advantage assets. Also, as the contents business becomes even more competitive, Kakao need to venture beyond entertainment boundaries to seize creative opportunities. Kakao entertainment with absorptive capacity and boundary spanning behaviors through M&A and contents value chain best qualified for entertainment dominant strategy.

Implementation of semi-infinite boundary condition for dynamic finite element analysis (동적 유한요소해석에서의 반무한 경계조건의 실행)

  • Choi, Chang-Ho;Chung, Ha-Ik
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.600-606
    • /
    • 2006
  • 실제 지반은 경계가 없는 무한상태로 존재하기 때문에 지반구조물의 동적거동을 유한요소법을 이용하여 해석할 시 모델의 영역을 성립하는 것은 특별한 고려가 필요하다. 유한요소법에서의 동적해석은 파동의 전달을 포함하기 때문에 모델의 경계에서 인공적인 경계조건이 필요하다. 인공적인 경계 조건은 유한요소내의 지반상태를 무한상태로 변형시킬 수 있어야 하며, 경계에 도달하는 응력 파동을 모델내로 반사시키지 않고 흡수 할 수 있어야 한다. 본 논문에서는 간단한 점 탄성 반무한 불연속 요소를 이용하여 지반구조물의 동적해석을 수행하는 방법을 보여준다. 반무한 요소의 실행은 OpenSees라는 유한요소 해석프로그램을 이용하여 수행되었으며, 예를 통하여 불연속 요소가 경계에 도달하는 응력 파동을 충분히 흡수하여 유한요소 모델을 반무한 상태로 전환 시킬 수 있다는 것을 보여준다.

  • PDF