• Title/Summary/Keyword: 경간/깊이 비

Search Result 17, Processing Time 0.026 seconds

The Mechanism of Load Resistance and Deformability of Reinforced Concrete Coupling Beams (철근 콘크리트 연결보의 하중 전달 기구와 변형 능력)

  • Hong, Sung-Gul;Jang, Sang-Ki
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.3 s.49
    • /
    • pp.113-123
    • /
    • 2006
  • An experimental investigation on the behavior of reinforced concrete coupling beams is presented. The test variables are the span-to-depth ratio, the ratio of flexural reinforcements and the ratio of shear rebars. The distribution of arch action and truss action which compose the mechanism of shear resistance is discussed. The increase of plastic deformation after yielding transforms the shear transfer by arch action into by truss action. This study proposes the deformation model for reinforced concrete coupling beams considering the bond slip of flexural reinforcement. The strain distribution model of shear reinforcements and flexural reinforcements based on test results is presented. The yielding of flexural reinforcements determines yielding states and the ultimate states of reinforced concrete coupling beam are defined as the ultimate compressive strain of struts and the degradation of compressive strength due to principal tensile strain of struts. The flexural-shear failure mechanism determines the ultimate state of RC coupling beams. It is expected that this model can be applied to displacement-based design methods.

Shear Strength of Concrete Deep Beam Reinforced AFRP rebar (AFRP rebar로 보강된 콘크리트 깊은보의 전단강도)

  • Lee, Young-Hak;Kim, Min-Sook;Cho, Jang-Se;Kim, Hee-Cheul
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.13 no.6
    • /
    • pp.1-9
    • /
    • 2009
  • This study carried out a shear experiment on concrete deep beam reinforced AFRP to investigate the shear strength of deep beam. The test was conducted on 8 specimens, and the variables were shear span ratio, reinforcement ratio, effective depth, and rebar type. We compared shear strength using ACI 318-08 STM with proposed equations that considered arching action according to shear span ratio. As a result, it was found that shear strength of deep beam reinforced AFRP rebar presented higher shear strength than steel rebar. ACI STM's predictions are more accurate than other predicting equations, and thus this research proposed model versus effective compressive strength of the concrete strut that considered strut size effect based on test results. The predictions obtained using the proposed model are in better agreement than previous equations and codes.

An Analysis of the Shear Strength of Reinforced Concrete Beams with Recycled Coarse Aggregates (순환굵은골재 철근 콘크리트 보의 전단강도 분석)

  • Ji, Sang-Kyu;Yun, Hyun-Do;Song, Seon-Hwa;Choi, Ki-Sun;You, Young-Chan;Kim, Keung-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.851-854
    • /
    • 2008
  • Using the recycled aggregate not only saves landfill space but also reduces the demand for extraction of natural raw material for new construction activity. However few investigations have been carried out to study the shear behaviors of RC beams with recycled aggregates such as low absorption of recycled aggregate and full-scale specimens. In this study, six reinforced concrete beams were tested to evaluate the effects of shear strength, and shear behavior on the replacement level (0, 30, 60, and 100%) of recycled coarse aggregate and different amounts of shear reinforcement. The results showed that the beams with recycled coarse aggregates present the similar shear strength and deflections as the beam with natural aggregate on an equal amount of shear reinforcement. the reinforced concrete beams with recycled coarse aggregates present the Influence of shear span-to-depth ratio, effective depth, tension reinforcement ratio and compressive strength as the beams with natural aggregate. Shear strength were compared with the provisions in current code (KCI2007) and the equation proposed by Zsutty. The KCI equations were conservative and subsequently can be used for the shear design of recycled aggregate concrete beam.

  • PDF

Enhancing the Performance of High-Strength Concrete Corbels Using Hybrid Reinforcing Technique (하이브리드 보강기법을 활용한 고강도 콘크리트 내민받침의 성능 향상)

  • Yang, Jun-Mo;Lee, Joo-Ha;Min, Kyung-Hwan;Yoon, Young-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.13-16
    • /
    • 2008
  • Corbels are short cantilevers that project from the faces of a column and are a type of stress disturbed member, resisting both the ultimate shear force applied to them by the beam, and the ultimate horizontal force caused by shrinkage, temperature changes, and creep of the supported elements. Recently, as there have been an increase in the use of high-strength concrete and the concern about corrosion problems, lots of researches about hybrid reinforcing technique, applying strategically high performance reinforcements to the concrete elements, are performed. In this study, fiber reinforced high strength concrete corbels were constructed and tested for applying hybrid reinforcing technique to the corbels using steel fibers and headed bars. The results showed that the performance in terms of load carrying capacities, stiffness, ductility, and crack width was improved, as the steel fibers were added and the percentage of steel fibers was increased. In addition, the corbel specimens used headed bars as main tension ties showed superior load carrying capacities, stiffness, and ductility to the corbel specimens anchored main tension ties by welding to the transverse bars.

  • PDF

Evaluation of Shear Behavior of Precast RC Beams According to Replacement Ratio of Ground Granulated Blast Furnace Slag (고로슬래그 미분말 치환율에 따른 프리캐스트 철근콘크리트 보의 전단거동 평가)

  • Jeong, Chan-Yu;Kim, Young-Seek;Lee, Jin-Seop;Kim, Sang-Woo;Kim, Kil-Hee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.2
    • /
    • pp.82-89
    • /
    • 2014
  • This study evaluates the shear performance of precast beams with ground granulated blast furnace slag. A total of four specimens according to replacement ratio of ground granulated blast furnace slag. The specimens under three loading points had a shear span-to-depth ratio of 2.5, and a rectangular section with a width of 200mm and a effect depth of 300 mm. In this study, existing equations were used for predicting the shear strength of the specimens. The shear strength by existing equations was compared with those of 89 reinforced concrete beams without shear reinforcement. It can be shown from experimental results that all specimens with ground granulated blast furnace slag showed a similar shear strength as compared with the specimen with portland cements alone.

Failure Behaviour and Shear Strength Equations of Reinforced Concrete Deep Beams (철근콘크리트 깊은 보의 파괴거동과 전단강도 산정식)

Validity Evaluation of Effective Strength of Concrete Strut using Strut-Tie Model Analysis of Structural Concrete (콘크리트 구조부재의 스트럿-타이 모델 해석을 통한 스트럿 유효강도의 적합성 평가)

  • Jeun, Chang Hyun;Yun, Young Mook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.5A
    • /
    • pp.443-462
    • /
    • 2010
  • The strut-tie model approach has proven to be effective in the ultimate analysis and design of structural concrete with disturbed regions. For the reliable analysis and design by the approach, however, the effective strength of concrete struts must be determined accurately. In this study, the validity of the effective strength of concrete struts, presented by the several design codes and many researchers including the author, was examined through the ultimate strength analysis of 24 reinforced concrete panels, 275 reinforced concrete deep beams, and 218 reinforced concrete corbels by using the conventional linear strut-tie model approach of current codes. The present study shows that the author's approach, resulting in an accurate and consistent evaluation of the ultimate strength of the panels, deep beams, and corbels, may reflect rationally the effects of primary variables including the types of strut-tie model and structural concrete, the conditions of load and geometry, and the strength of concrete in the strut-tie model analysis and design of structural concrete.