• 제목/요약/키워드: 결합 학습 모델

검색결과 413건 처리시간 0.024초

암시적 피드백 데이터의 행렬 분해 기반 누락 데이터 모델링 (Missing Data Modeling based on Matrix Factorization of Implicit Feedback Dataset)

  • 기가기;정영지
    • 한국정보통신학회논문지
    • /
    • 제23권5호
    • /
    • pp.495-507
    • /
    • 2019
  • 데이터 희소성은 추천 시스템의 주요 과제 중 하나이다. 추천 시스템에서는, 일부분만 관찰된 데이터이고 다른 부분은 데이터가 누락된 대용량 데이터를 포함하고 있다. 대부분의 연구에서는, 데이터 세트에서 무작위로 데이터가 누락되었다고 가정하고, 관찰된 데이터만을 사용하여 추천 모델을 학습함으로써 사용자에게 항목을 추천하고 있다. 그러나, 실제로는 누락된 데이터는 무작위로 손실되었다고 볼 수 없다. 본 연구에서는, 누락 된 데이터를 사용자적 관심의 부정적인 예라고 간주하였다. 또한, 3가지 샘플 접근 방식을 SVD++ 알고리즘과 결합하여 SVD++_W, SVD++_R 그리고 SVD++_KNN 알고리즘을 제안하였다. 실험결과를 통하여, 제안한 3가지 샘플 접근 방식이 기존의 기본적인 알고리즘 보다 Top-N 추천에서 정확성과 회수율을 효과적으로 향상시킬 수 있다는 것을 보였다. 특히, SVD++_KNN 가 가장 우수한 성능을 보였는데, 이는 KNN 샘플 접근 방식이 사용자적 관심의 부정적인 예를 추출하는데 가장 효율적인 방법이라는 것을 보여주었다.

AlphaPose를 활용한 LSTM(Long Short-Term Memory) 기반 이상행동인식 (LSTM(Long Short-Term Memory)-Based Abnormal Behavior Recognition Using AlphaPose)

  • 배현재;장규진;김영훈;김진평
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제10권5호
    • /
    • pp.187-194
    • /
    • 2021
  • 사람의 행동인식(Action Recognition)은 사람의 관절 움직임에 따라 어떤 행동을 하는지 인식하는 것이다. 이를 위해서 영상처리에 활용되는 컴퓨터 비전 태스크를 활용하였다. 사람의 행동인식은 딥러닝과 CCTV를 결합한 안전사고 대응서비스로서 안전관리 현장 내에서도 적용될 수 있다. 기존연구는 딥러닝을 활용하여 사람의 관절 키포인트 추출을 통한 행동인식 연구가 상대적으로 부족한 상태이다. 또한 안전관리 현장에서 작업자를 지속적이고 체계적으로 관리하기 어려운 문제점도 있었다. 본 논문에서는 이러한 문제점들을 해결하기 위해 관절 키포인트와 관절 움직임 정보만을 이용하여 위험 행동을 인식하는 방법을 제안하고자 한다. 자세추정방법(Pose Estimation)의 하나인 AlphaPose를 활용하여 신체 부위의 관절 키포인트를 추출하였다. 추출된 관절 키포인트를 LSTM(Long Short-Term Memory) 모델에 순차적으로 입력하여 연속적인 데이터로 학습을 하였다. 행동인식 정확률을 확인한 결과 "누워있기(Lying Down)" 행동인식 결과의 정확도가 높음을 확인할 수 있었다.

차세대 수자원위성 활용기술 개발을 위한 영상레이더 기반의 토양수분 및 농업적 가뭄지수 산정 (Soil moisture and agricultural drought index estimation based on synthetic aperture radar images for the next-generation water resources satellite application technology development)

  • 김성준;정지훈;이용관;남원호;권현한
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2023년도 학술발표회
    • /
    • pp.5-5
    • /
    • 2023
  • 제3차 우주개발 진흥 기본계획의 일환으로써 개발되는 차세대 중형위성 5호인 수자원위성은 수자원/수재해 감시 전용 위성으로 2025년 발사 예정이다. 수자원위성의 메인 센서인 C-band 영상레이더(Synthetic Aperture Radar, SAR)는 기상조건 및 주야 상관없이 지표면 관측이 가능한 센서로 급변하는 수재해 양상에 효과적으로 대응하기 위해 탑재된 센서이다. 본 연구사업은 차세대 수자원위성의 효과적 활용 방안 및 SAR 자료기반의 활용산출물 및 주제도 서비스를 위한 알고리즘 구조설계 및 표출시스템 시범개발을 목표로 하고 있으며, 홍수/가뭄/안전/환경모니터링을 주제로 수자원 및 원격탐사 분야의 다학제적 전문가들로 구성된 컨소시엄을 구성하여 추진하고 있다. 본 연구의 내용은 가뭄 모니터링을 위해 개발 중인 SAR 기반 토양수분과 농업적 가뭄지수 산정 알고리즘 개발 및 공간적 표출을 포함한다. 토양수분은 SAR 영상에서 지표피복별로 추출된 후방산란계수와 수문학적 개념의 융합을 통해 논/밭/산림에 대해 산정한다. 물리적 특성에 기반한 변화탐지모델을 활용해 토양수분량을 추출 후, 기계학습기법과 S C S - C N 방법에서 파생된 수문학적 개념 5일 선행강우량과 결합한 토양수분 산정 알고리즘을 개발하였다. 산정된 토양수분을 기반으로, 논 지역은 벼 재배에 따른 담수 시기를 고려한 토양의 포화/불포화상태, 밭 지역은 토양 종류에 따른 토양의 물리적 특성, 산림 지역은 수문학적 개념 및 식생지수를 활용하여 가뭄 판단 기준을 구축하고, 가뭄의 해갈 여부와 해갈되는 시점의 강우량을 산정 가능한 알고리즘을 개발하였다. 개발된 가뭄 모니터링 기법은 향후 고도화, 최적화 및 안정화를 통해 수자원위성의 핵심 활용기술로써 구현할 계획이다.

  • PDF

입 모양 인식 시스템 전처리를 위한 관심 영역 추출과 이중 선형 보간법 적용 (Region of Interest Extraction and Bilinear Interpolation Application for Preprocessing of Lipreading Systems)

  • 한재혁;김용기;김미혜
    • 정보처리학회 논문지
    • /
    • 제13권4호
    • /
    • pp.189-198
    • /
    • 2024
  • 입 모양 인식은 음성 인식의 중요 부분 중 하나로 음성 인식을 위한 입 모양 인식 시스템에서 입 모양 인식 성능을 개선하기 위한 여러 연구가 진행됐다. 최근의 연구에서는 인식 성능을 개선하기 위해 입 모양 인식 시스템의 모델 구조를 수정하는 방법이 사용됐다. 본 연구에서는 모델 구조를 수정하는 것으로 인식 성능을 개선하는 기존의 연구와 달리 모델 구조의 변화 없이 인식 성능을 개선하는 것을 목표로 한다. 모델 구조의 수정 없이 인식 성능을 개선하기 위해, 사람이 하는 입 모양 인식에서 사용되는 단서를 참고해 입 모양 인식 시스템의 기존 관심 영역인 입술 영역과 함께 턱, 뺨과 같은 다른 영역을 관심 영역으로 설정하고 각 관심 영역의 인식률을 비교해 가장 높은 성능의 관심 영역을 제안한다. 또한, 관심 영역 크기를 정규화하는 과정에서 보간법의 차이로 인해 발생하는 정규화 결과의 차이가 인식 성능에 영향을 준다고 가정하고 최근접 이웃 보간법, 이중 선형 보간법, 이중 삼차 보간법을 사용해 동일한 관심 영역을 보간하고 각 보간법에 따른 입 모양 인식률을 비교해 가장 높은 성능의 보간법을 제안한다. 각 관심 영역은 객체 탐지 인공신경망을 학습시켜 검출하고, 각 관심 영역을 정규화하고 특징을 추출하고 결합한 뒤, 결합된 특징들을 차원 축소한 결과를 저차원 공간으로 매핑하는 것으로 동적 정합 템플릿을 생성했다. 생성된 동적 정합 템플릿들과 저차원 공간으로 매핑된 데이터의 거리를 비교하는 것으로 인식률을 평가했다. 실험 결과 관심 영역의 비교에서는 입술 영역만을 포함하는 관심 영역의 결과가 이전 연구의 93.92%의 평균 인식률보다 3.44% 높은 97.36%의 평균 인식률을 보였으며, 보간법의 비교에서는 이중 선형 보간법이 97.36%로 최근접 이웃 보간법에 비해 14.65%, 이중 삼차 보간법에 비해 5.55% 높은 성능을 나타내었다. 본 연구에 사용된 코드는 https://github.com/haraisi2/Lipreading-Systems에서 확인할 수 있다.

SpatioTemporal GIS를 활용한 도시공간모형 적용에 관한 연구 / 인구분포모델링을 중심으로

  • 남광우;이성호;김영섭;최철옹
    • 한국GIS학회:학술대회논문집
    • /
    • 한국GIS학회 2002년도 춘계학술대회논문집
    • /
    • pp.127-141
    • /
    • 2002
  • GIS환경에서 도시모형(urban model)의 적용을 목적으로 사회·경제적 데이터(socio-economic data)를 활용하는 과정은 도시현상이 갖는 복잡성과 변동성으로 인해 하나의 특정시간에서의 상황을 그대로 저장한 형태인 스냅샷 모형(snapshot model)만으로는 효율적인 공간분석의 실행이 불가능하다. 또한 도시모형을 적용하는 과정에서 GIS의 대상이 되는 공간, 속성, 시간의 정의는 분석목적에 따라 다르게 정의되어질 수 있으며 이에 따라 상이한 결과가 도출될 수 있다. 본 연구는 30년 간의 부산시 인구분포의 동적 변화과정 관측을 위해 시간개념을 결합한 Temporal GIS를 구축하고 이를 활용하여 인구밀도모형 및 접근성모형을 적용하는 과정을 통해 보다 효율적이고 다양한 결과를 제시할 수 있는 GIS 활용방안을 제시하고자 하였다. 흔히 공간현상의 계량화와 통계적 기법의 적용을 위한 데이터 처리과정은 많은 오차와 오류를 유발할 수 있다. 이러한 문제의 해결을 위해서는 우선적으로 분석목적에 맞는 데이터의 정의(Data Definition), 적용하고자 하는 모형(Model)의 유용성 검증, 적절한 분석단위의 설정, 결과해석의 객관적 접근 등이 요구된다. 이와 더불어 변동성 파악을 위한 시계열 자료의 효율적 처리를 위한 방법론이 마련되어져야 한다. 즉, GIS환경에서의 도시모형의 적용에 따른 효율성과 효과성의 극대화를 위해서는 분석목적에 맞는 데이터모델의 설정과 공간DB의 구축방법이 이루어져야 하며 분석가능한 데이터의 유형에 대한 충분한 고려와 적용과정에서 분석결과에 중대한 영향을 미칠 수 있는 요소들을 미리 검증하여 결정하는 순환적 의사결정과정이 필요하다., 표준패턴을 음표와 비음표의 두개의 그룹으로 나누어 인식함으로써 DP 매칭의 처리 속도를 개선시켰고, 국소적인 변형이 있는 패턴과 특징의 수가 다른 패턴의 경우에도 좋은 인식률을 얻었다.r interferon alfa concentrated solution can be established according to the monograph of EP suggesting the revision of Minimum requirements for biological productss of e-procurement, e-placement, e-payment are also investigated.. monocytogenes, E. coli 및 S. enteritidis에 대한 키토산의 최소저해농도는 각각 0.1461 mg/mL, 0.2419 mg/mL, 0.0980 mg/mL 및 0.0490 mg/mL로 측정되었다. 또한 2%(v/v) 초산 자체의 최소저해농도를 측정한 결과, B. cereus, L. mosocytogenes, E. eoli에 대해서는 control과 비교시 유의적인 항균효과는 나타나지 않았다. 반면에 S. enteritidis의 경우는 배양시간 4시간까지는 항균활성을 나타내었지만, 8시간 이후부터는 S. enteritidis의 성장이 control 보다 높아져 배양시간 20시간에서는 control 보다 약 2배 이상 균주의 성장을 촉진시켰다.차에 따른 개별화 학습을 가능하게 할 뿐만 아니라 능동적인 참여를 유도하여 학습효율을 높일 수 있을 것으로 기대된다.향은 패션마케팅의 정의와 적용범위를 축소시킬 수 있는 위험을 내재한 것으로 보여진다. 그런가 하면, 많이 다루어진 주제라

  • PDF

X-ray 영상에서 VHS와 콥 각도 자동 추출을 위한 흉추 분할 기법 (A Thoracic Spine Segmentation Technique for Automatic Extraction of VHS and Cobb Angle from X-ray Images)

  • 이예은;한승화;이동규;김호준
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제12권1호
    • /
    • pp.51-58
    • /
    • 2023
  • 본 논문에서는 X-ray 영상에서 의료 진단지표를 자동으로 추출하기 위한 조직분할 기법을 제안한다. 척추질환이나 심장질환에 대한 진단지표로서, 흉추-심장 비율이나 콥 각도 등의 지표를 산출하기 위해서는 흉부 X-ray 영상으로부터 흉추, 용골 및 심장의 영역을 정확하게 분할하는 과정이 필요하다. 본 연구에서는 이를 위하여 계층별로 영상의 고해상도의 표현과 저해상도의 특징지도로 변환되는 구조가 병렬적으로 연결되는 형태의 심층신경망 모델을 채택하였다. 이러한 구조는 영상에서 세부 조직의 상대적인 위치정보가 분할 과정에 효과적으로 반영될 수 있게 한다. 또한 픽셀 정보와 객체 정보가 다단계의 과정으로 상호 작용되는 OCR 모듈과, 네트워크의 각 채널이 서로 다른 가중치 값으로 반영되도록 하는 채널 어텐션 모듈을 결합하여 학습 성능을 개선할 수 있음을 보인다. 부수적으로 X-ray 영상에서 피사체의 위치 변화, 형태의 변형 및 크기 변이 등에도 강인한 성능을 제공하기 위하여 학습데이터를 증강하는 방법을 제시하였다. 총 145개의 인체 흉부 X-ray 영상과, 총 118개의 동물 X-ray 영상을 사용한 실험을 통하여 제안된 이론의 타당성을 평가하였다.

무용패러다임의 진화: 실천공동체의 이론과 사례를 근거로 한 커뮤니티댄스의 재개념화 (New Perspectives: Reconceptualization of Community Dance Based on Community of Practice Theory and Practice)

  • 김지영;박인실
    • 한국체육학회지인문사회과학편
    • /
    • 제55권4호
    • /
    • pp.443-462
    • /
    • 2016
  • 이 연구는 기존의 커뮤니티댄스에 대한 협의의 개념으로부터 현장의 새로운 경향과 실천, 다양한 가치들을 반영한 보다 광의적인 해석과 진화된 개념모델을 제시하는데 그 목적이 있다. 이를 위하여 국내 커뮤니티댄스 전문가 10명의 실천사례로부터 질적 자료를 수집하였고 이를 토대로 공통속성을 범주화하였다. 또한 Wenger(1991)의 실천공동체(Commmunity of Practice: CoP)의 이론적 관점에서 커뮤니티댄스의 개념을 논의하였다. 첫째, 커뮤니티댄스 CoP의 기본전제로써 '공동체'는 자생적, 상호적, 지역적, 창의적인 속성을 포함한다. 둘째, 커뮤니티댄스 CoP에서 '실천'의 의미는 제약이 없는 개방성, 대상 중심적 접근, 마음-몸 작용에 기초한 즉흥성, 가치지향의 과정중심, 일상적 삶과의 연계성을 포함하고 있다. 셋째, 커뮤니티댄스 CoP를 통한 '사회적 학습'은 공통의 관심사와 목표, 무용의 질과 위상, 공동자산으로써 체화된 댄스리터리시 등 사회적 측면의 학습 차원을 보여준다. 넷째, 커뮤니티댄스 CoP의 '정체성'은 예술치유와 관계회복, 예술가와 협업하는 아마추어리즘, 민주적 시민의식과 공민적 창조성의 결합, 문화다양성과 사회통합, 지속가능발전의 '모두를 위한 춤'을 지향한다는 점에서 현재진행형 속성과 미래지향적 가치를 모두 반영하며 그 개념이 확장되고 진화되어 가고 있음을 알 수 있다.

복합 특징의 분리 처리를 위한 모듈화된 Coupled-ART 신경회로망 (A Coupled-ART Neural Network Capable of Modularized Categorization of Patterns)

  • 우용태;이남일;안광선
    • 한국통신학회논문지
    • /
    • 제19권10호
    • /
    • pp.2028-2042
    • /
    • 1994
  • ART(Adaptive Resonance Theory) 신경회로망과 같은 자기조직망에서 신호와 잡음을 적절히 정의한다는 것은 어려운 문제이다. 즉, 한 입력 패턴의 일부분이 어떤 패턴에서는 입력 패턴의 신호로 다루어지나 다른 패턴에서는 잡음으로 취급되어야 할 대도 있다. ART 신경회로망 모델은 신호와 잡음의 정의를 문맥과 학습에 따라 적절하게 규정하기 위하여 계산 단위를 자동적으로 자기척도(Self-Scaling 할 수 있는 기능을 가지고 있다. ART 모델에서의 이러한 자기 척도 기능은 입력 패턴들이 유사한 성질을 가진 경우에는 유효하게 잘 동작한다. 그러나 ART 모델은 기본적으로 하나의 경계 인수에 의해 패턴을 분류하기 때문에 여러가지 성질이 복합된 입력 패턴을 효율적으로 분류하기가 어렵다. 예를 들어 패턴들을 자세하게 분류하기 위하여 경계 인수의 값을 크게 하면 잡음으로 취급되어야 할 부분이 신호로 취급되어 불필요한 인식 부류가 발생한다. 또한 경계 인수를 작게 하면 패턴을 구별하기 위한 중요한 정보가 잡음으로 취급되는 경우가 발생하여 비효율적인 분류를 한다. 본 논문에서는 ART 모델의 이러한 문제점을 해결하기 위하여 복합 특징을 분리 처리할 수 잇는 모듈화된 Coupled-ART 신경회로망 모델을 제안하였다. Coupled-ART 신경회로망 모델은 신경회로망의 구조를 기능별로 모듈화하고 이러한 모듈들을 서로 밀착된 구조로 결합하여 확장된 기능을 수행하는 형태로 구성하였다. 이러한 모듈화된 신경회로망을 통해 패턴 인식 과정에서 다양한 크기나 성질을 가진 특징들에 대한 분류를 비슷한 크기나 성질을 가진 특징들끼리 분리하여 분류를 하였다. 그리고 본 논문에서 제안한 상위층에서 각 모듈의 처리 결과를 종합하여 최종적인 분류를 함으로써 기존의 ART 모델보다 더 효율적으로 패턴을 분류할 수 있다.28.8%$)에서 높고 60 및 40%수분구(水分區)($23.6{\sim}24.1%$)에서 낮은 편이었다. 그러나 옥수수의 조섬유함량(粗纖維含量)에 따라 큰 차이(差異)가 없었다. 건엽(乾葉)의 조단백질함량(粗蛋白質含量)에 따라 큰 차이(差異)가 없었다. 건엽(乾葉)의 조단백질함량(粗蛋白質含量)은 60%수분구(水分區)($14.2{\sim}21.6%$) 및 40%수분구(水分區)($13.8{\sim}16.0%$)가 다른 고토양수분구(高土壤水分區)($7.3{\sim}13.9%$)보다 높은 편이었다. 5. 건경중(乾莖中)의 조섬유함량(粗纖維含量)은 $24.6{\sim}36.7%$로서 건엽중(乾葉中)의 함량(含量)보다 월등히 높았고 조단백질함량(粗蛋白質含量)은 $2.0{\sim}5.3%$로서 건엽중(乾葉中)의 함량(含量)보다 현저히 낮았다. 특(特)히 P.931의 건경중(乾莖中)의 조섬유함량(粗纖維含量)은 다른 작물(作物)에 비해 현저(顯著)히 높은 편이었다.적차이(量的差異)를 나타냈다.間)에는 부(負)(-)의 상관(相關)이 있다.($P{\leq}0.01%$). 5. NEL 및 starch value 환경온도(環境溫度)가 상승(上昇)됨에 따라 감소(減少)된다. 4 엽기(葉期) sorghum식물(植物)의 환경온도(環境溫度)를 달리 하였을 때 NEL가치(價値)는 각각(各各) 4.87MJ($30/25^{\circ}C$), 5.46MJ($25/20^{\circ}C$) 및 5.81MJ/kg($18/8^{\circ}C$)로 변(變)하여 고온(高溫)에서 net energy lactation 축적(蓄積)이 크게 감소(減少)되었다.다.

  • PDF

다중 클래스 SVM을 이용한 계층적 인터넷 애플리케이션 트래픽의 분류 (Hierarchical Internet Application Traffic Classification using a Multi-class SVM)

  • 유재학;이한성;임영희;김명섭;박대희
    • 한국지능시스템학회논문지
    • /
    • 제20권1호
    • /
    • pp.7-14
    • /
    • 2010
  • 본 논문에서는 인터넷 애플리케이션 트래픽 분류방법으로 대표되는 포트 번호 및 페이로드 정보를 이용하는 방법론의 한계점을 극복하는 대안으로서, SVM을 기반으로 한 계층적 인터넷 애플리케이션 트래픽 분류 시스템을 제안한다. 제안된 시스템은 이진 분류기인 SVM과 단일클래스 SVM의 대표적 모델인 SVDD를 계층적으로 결합한 새로운 트래픽 분류 모델로서, 학내에서 수집된 양방향 트래픽 플로우 데이터에 대한 최적의 속성 부분집합을 선택한 후, P2P 트래픽과 non-P2P 트래픽을 빠르게 분류하는 첫 번째 계층, P2P 트래픽들을 파일공유, 메신저, TV로 분류하는 두 번째 계층, 그리고 전체 16가지 애플리케이션 트래픽별로 세분화 분류하는 세 번째 계층으로 구성된다. 제안된 시스템은 인터넷 애플리케이션 트래픽을 coarse 혹은 fine하게 분류함으로써 효율적인 시스템의 자원 관리, 안정적인 네트워크 환경의 지원, 원활한 대역폭의 사용, 그리고 적절한 QoS를 보장할 수 있다. 또한, 새로운 애플리케이션 트래픽이 추가되더라도 전체 시스템을 재학습시킬 필요 없이 새로운 애플리케이션 트래픽만을 추가 학습함으로써 시스템의 점증적 갱신 및 확장성도 가능하다. 실험을 통하여 제안된 시스템의 성능을 검증한다.

지식 데이타베이스를 적용한 효율적인 세균 의료영상 검색 시스템의 구현 (Implementation of an Efficient Microbial Medical Image Retrieval System Applying Knowledge Databases)

  • 신용원;구봉오
    • 한국컴퓨터정보학회논문지
    • /
    • 제10권1호
    • /
    • pp.93-100
    • /
    • 2005
  • 본 연구는 신규 임상병리사로 하여금 보다 정확한 의사결정과 효율적인 교육에 이용할 수 있는 지식 및 내용 기반 의료 세균화상 검색 시스템을 설계 및 구현하는 것이다. 이를 위해, 먼저 알고리듬방식의 검색 이전에 경험적 지식을 바탕으로 세균동정단계 중 가장 빠른 경로를 탐색하여 원인균 동정에 소요되는 시간을 줄일 수 있도록 룰 베이스를 근거로 유연성 있는 탐색경로를 설정하여 전체적인 추론을 수행한다. 다음으로, 색상 모델 중에서 HSV 컬러 모델을 이용하여 세균화상 중에서도 특히 세균화상으로부터 시각정보의 색상 특징 벡터를 추출할 수 있는 색상 특징 추출방법을 제안한다. 아울러 대용량 세균화상 데이터베이스를 기반으로 보다 빠른 검색 성능을 위해, 배지, 검체, 부서, 세균명과 같은 단순속성들에 대해서는 B+-트리, 세균화상에 대한 부가적인 설명 정보로부터 추출한 키워드들에 대해서는 역화일기법, 그리고 화상으로부터 추출한 고차원 색상 특징벡터에 대해서는 스캔-기반 필터링(Scan-Based Filtering:SBF) 기법을 결합한 통합 색인기법을 기술한다. 마지막으로 구현된 시스템은 시각적인 내용 자체의 정보와 지식을 이용하여 효과적으로 복잡한 세균화상을 검색 및 관리할 수 있는 가능성을 보인다. 아울러 구현한 지식 및 내-용기반 세균화상 검색 시스템을 통해 임상분야의 지식을 잘 구조화함으로써 초보적인 임상병리사의 학습기간을 현저히 단축시킬 수 있을 것으로 기대된다.

  • PDF