Browse > Article
http://dx.doi.org/10.6109/jkiice.2019.23.5.495

Missing Data Modeling based on Matrix Factorization of Implicit Feedback Dataset  

Ji, JiaQi (Department of Information Center, Hebei Normal University for Nationalities)
Chung, Yeongjee (Department of Computer and Software Engineering, Wonkwang University)
Abstract
Data sparsity is one of the main challenges for the recommender system. The recommender system contains massive data in which only a small part is the observed data and the others are missing data. Most studies assume that missing data is randomly missing from the dataset. Therefore, they only use observed data to train recommendation model, then recommend items to users. In actual case, however, missing data do not lost randomly. In our research, treat these missing data as negative examples of users' interest. Three sample methods are seamlessly integrated into SVD++ algorithm and then propose SVD++_W, SVD++_R and SVD++_KNN algorithm. Experimental results show that proposed sample methods effectively improve the precision in Top-N recommendation over the baseline algorithms. Among the three improved algorithms, SVD++_KNN has the best performance, which shows that the KNN sample method is a more effective way to extract the negative examples of the users' interest.
Keywords
Recommender System; Matrix Factorization; Missing Data; Data Sparsity;
Citations & Related Records
연도 인용수 순위
  • Reference
1 V. Bajpai, and Y. Yadav, "Survay Ppaer on Dynamic Recommendation System for e-Commerce," International Journal of Advanced Research in Computer Science [Online], vol. 9, no. 1, pp. 774-777, 2018. Available: http://www.ijarcs.info/index.php/Ijarcs/article/view/5503/4595   DOI
2 I. E. Kartoglu, and M. W. Spratling, "Two collaborative filtering recommender systems based on sparse dictionary coding," in Knowledge and Information Systems, vol. 57, no. 3, pp. 709-720, 2018.   DOI
3 W. Lu, F.-l. Chung, K. Lai, and L. Zhang, "Recommender system based on scarce information mining," Neural Networks, Elsevier, vol. 93, pp. 256-266, 2017.   DOI
4 H. S. Moon, J. H. Yoon, and J. K. Kim, "The impact of information amount on the performance of recommender systems," in Proceedings of the 18th Annual International Conference on Electronic Commerce(ICEC 2016): e-Commerce in Smart connected World, Suwon, Republic of Korea: ACM New York, NY, Article no. 6, 2016.
5 R. Heckel, and K. Ramchandran, "The Sample Complexity of Online One-Class Collaborative Filtering," Machine Learning (cs.LG) arXiv preprint arXiv:1706.00061, 2017 [Online]. Available: https://arXiv.org/abs/1706.00061.
6 I. Jordanov, N. Petrov, and A. Petrozziello, "Classifiers Accuracy Improvement Based on Missing Data Imputation," Journal of Artificial Intelligence and Soft Computing Research(JAISCR), vol. 8, no. 1, pp. 31-48, 2018.   DOI
7 D. Li, C. Miao, S. Chu, J. Mallen, T. Yoshioka, and P. Srivastava, "Stable Matrix Approximation for Top-N Recommendation on Implicit Feedback Data," in Proceedings of the 51st Hawaii International Conference on System Sciences(HICSS-51), Waikoloa Village, HI: HICSS, pp. 1563-1572, Jan. 2018.
8 X. Zhao, Z. Niu, K. Wang, K. Niu, and Z. Liu, "Improving top-N recommendation performance using missing data," Mathematical Problems in Engineering [Online], vol. 2015, Article ID 380472, 2015. Available: https://www.hindawi.com/journals/mpe/2015/380472/
9 M. H. Abdi, G. O. Okeyo, and R. W. Mwangi, "Matrix Factorization Techniques for Context-Aware Collaborative Filtering Recommender Systems: A Survey," Computer and Information Science, Canadian Center of Science and Education, vol. 11, no. 2, pp. 1-10, 2018.
10 B. Marlin, R. S. Zemel, S. Roweis, and M. Slaney, "Collaborative filtering and the missing at random assumption," Machine Learning (cs.LG) arXiv preprint arXiv:1206.5267, 2012 [Online]. Available: https://arXiv.org/abs/1206.5267.
11 D. Jannach, and G. Adomavicius, "Recommendations with a purpose," in Proceedings of the 10th ACM Conference on Recommender Systems, Boston, MA: ACM New York, NY, pp. 7-10, 2016.
12 Y. Koren, "Factorization Meets the Neighborhood: a Multifaceted Collaborative Filtering Model," in Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Las Vegas, NV: ACM New York, NY, pp. 426-434, Aug. 2008.
13 D.-K. Chae, S.-C. Lee, S.-Y. Lee, and S.-W. Kim, "On identifying k-nearest neighbors in neighborhood models for efficient and effective collaborative filtering," Neurocomputing, Elsevier, vol. 278, pp. 134-143, 2018.   DOI