인식기와 클래스 레이블로 구성된 고차 확률 분포를 가정이나 근사 없이 저장하고, 평가하는 것은 기하급수적으로 복잡하고 관리하기 어렵다. 따라서, 의존관계를 이용한 근사 방법에 의존하게 된다. 본 논문에서는 기존의 2차 의존관계에 기반 한 곱 근사 방법을 확장하여, 이 확률 분포를 3차 의존관계에 의해 최적으로 곱 근사 하는 방법을 제안하고자 한다. 제안된 3차 의존관계에 기반 한 곱 근사 방법은 Concordia 대학과 UCI(University of California, Irvine) 대학으로부터 얻은 필기 숫자를 인식하는 실험에서 다수 인식기의 결합 방법에 적용되었고, 실험을 통하여 제안된 방법의 유용성을 살펴보았다.
본 논문에서는 격조사의 구문적인 특성을 이용하여, 수식어까지 포함한 명사구 추출 방법을 연구한다. 명사구 판정을 위해 연속적인 형태소열을 문맥정보로 사용하던 기존의 방법과 달리, 명사구의 처음과 끝 그리고 명사구 주변의 형태소를 이용하여 명사구의 수식 부분과 중심 명사를 문맥정보로 사용한다. 다양한 형태의 문맥 정보들은 최대 엔트로피 원리(Maximum Entropy Principle)에 의해 하나의 확률 분포로 결합된다. 본 논문에서 제안하는 명사구 추출 방법은 먼저 구문 트리 태깅된 코퍼스에서 품사열로 표현되는 명사구 문법 규칙을 얻어낸다. 이렇게 얻어낸 명사구 규칙을 이용하여 격조사와 인접한 명사구 후보들을 추출한다. 추출된 각 명사구 후보는 학습 코퍼스에서 얻어낸 확률 분포에 기반하여 명사구로 해석될 확률값을 부여받는다. 이 중 제일 확률값이 높은 것을 선택하는 형태로 각 격조사와 관계있는 명사구를 추출한다. 본 연구에서 제시하는 모델로 시험을 한 결과 평균 4.5개의 구를 포함하는 명사구를 추출할 수 있었다.
재현기간이 수백년 이상인 이상홍수의 초과확률을 추정하기 위해서는 재현기간 이상의 홍수자료를 이용해 내삽(interpolation)을 해야 하지만 현재 우리나라의 체계적(systematic) 관측자료 기간은 이에 훨씬 미치지 못한다. 따라서, 역사 자료(historical data)를 이용해 자료 길이를 확장하는 방법, 홍수자료에 비해 비교적긴 강우자료와 유출 모형에 의한 합성자료를 이용하는 방법 등이 사용되어 왔다. 본 연구에서는 역사 자료와 체계적 관측자료를 효율적으로 결합할 수 있는 EMA(Expected Moment Algorithm) 기법을 연구하였다. EMA는 Cohn 등(1997)에 의해 제안된 방법으로 미국의 공식 분포인 LP3(Log-Pearson type 3) 분포를 대상으로 반복 계산을 통해 매개변수를 추정하는 기법으로서 본 연구에서는 LP3 분포 대신에 최근 국내 홍수빈도해석 시 많이 쓰이고 있는 GEV(Generalized Extreme Value) 분포를 대상으로 EMA 절차를 이론적으로 유도하였다.
본 연구에서는 광양-묘도 지역의 평균풍속을 추정하기 위하여, 일별 최대 풍속과 해당 방향에 대한 결합분포확률의 통계학적 해석에 극한값 확률분포 모델이 사용되었다. 이를 위하여, 교량 가설지점 인근의 기상관측소에 대한 일별 최대풍속 및 해당풍향의 데이터로부터 각각의 관측소에 대한 일별 최대기록의 빈도를 조사하였으며, 16방위 및 전방위에 대한 년 최대풍속의 표본을 추출하였다. 이러한 풍속기록은 Gumbel 및 Weibull 분포모델에 적용하였으며, 모멘트방법 및 최소제곱법 등을 통해 모수를 추정하였다. 또한, PPCC 검사를 통해 분포모델 및 모수의 적합 여부를 검사하였다. 적합 여부가 판단된 모수로부터, 해당 관측소별로 데이터의 표본 크기 및 교량 가설지점으로부터의 거리에 대한 요소를 고려하여 16방위 및 전방위에 대한 년 최대풍속을 추정하였다.
심해에서 발생한 다방향불규칙 파랑이 수심변화에 의해서 어떠한 형태로 변형할 것인가를 명확히 파악하는 것은 연안구조물의 설계, 연안침식대책 공법의 확립에 있어서 중요한 과제이다. 본 연구는 선형파동이론을 적용할 수 있는 수심영역을 대상으로 에너지 평행방정식에 의해 방향 스펙트럼을 천수변형시킴으로써 얻어지는 제원을 입력조건으로서 파고, 주기, 파향의 결합확률분포를 수치적으로 구했고, 추정된 결합확률분포로부터 에너지 평형방정식의 천수변형예측에 대한 적용성을 수치적으로 검토했다. 또한 수심이 다른 2지점의 3성분 행렬배치에 의해 동시 측정되어진 방향 스펙트럼을 입력조건으로서, 천해역에 있어서의 방향 스펙트럼의 천수변형예측에 대한 에너지 평형방정식의 적용성 및 문제점에 대해서 검토한 것이다.
점착성 유사는 응집 현상을 겪는 유사로, 응집 현상(Flocculation Process)는 응집 과정(Aggregation Process)와 파괴 과정(Breakup Process)의 경쟁으로 이루어진다고 여겨진다. 응집 현상을 통해 점착성 유사는 물과 점착성을 띠는 작은 입자들의 덩어리인 플럭(Floc)을 형성하여 흐름 내에서는 대부분이 플럭의 형태로 이동한다. 점착성 유사의 응집 모형 중 하나인 플럭 성장모형(Floc Growth Model, FGM)은 상미분 방정식으로 시간에 따른 플럭의 크기를 계산하는 모형이다. 응집과 파괴의 평형 상태에서 평균 입경을 얻는다. 이러한 FGM은 낮은 수치 계산 비용으로 합리적인 계산 결과를 얻을 수 있으며, 유사 이동 모형 혹은 흐름 모형과의 결합이 수월한 장점을 가진다. 또한, 닫힌 계(Closed System)에서 질량이 보존되는 특징이 있다. 반면, 결정론적인 특성을 띠면서 특정 플럭 크기만을 계산하기 때문에 점착성 유사의 입도 분포에 대한 정보를 얻을 수 없다. 결정론적 특성을 띠는 FGM에 추계학적 방법을 적용함으로써 특정 확률 분포형을 가지는 플럭의 입도 분포를 얻을 수 있다. 본 연구에서는 기 개발된 추계학적 FGM과 유사 이동 모형의 결합을 통해 변화하는 유수동역학적 조건에서 플럭의 입도 분포를 산정하고자 한다. 이전의 많은 실험실 실험 결과들은 부유가 발생한 상태를 유지하면서 수행되는 것으로, 특정 난류 특성(난류 소산 매개변수)와 특정 유사 농도 조건에서의 입도 분포를 얻는다. 그러나 하구부 및 하천의 하류는 조류의 영향을 받는 구간으로, 점착성 유사의 특성을 분석하기 위해서는 변화하는 유수동역학적 특성에 관한 고려가 필수적이라 할 수 있다. 결합된 점착성 유사 입도 분포 모형은 플럭의 침강과 재부유를 고려할 수 있는 특징을 가지며, 실측자료와의 비교를 통해 입도 분포를 합리적으로 모의하는 것으로 나타난다. 본 연구에서 개발된 점착성 유사 입도 분포 모형은 나아가 비점착성 유사의 입도 분포 모형과의 결합을 통해 두 종류의 유사가 혼재하는 구간에서도 합리적인 입도분포와 유사의 이동을 모의할 수 있을 것으로 예측된다.
일상적인 상황이 주로 시간을 고려한 일정에 따라서만 발생한다고 가정하면 각 상황별 확률분포함수에 기반한 데이터 생성법은 효과적이다. 하지만, 사람들은 상황을 인식하거나 판단할 때, 이전 상황을 고려하여 현재 상황을 미루어 짐작하거나 결정하는 경우도 흔하다. 본 논문에서 제안한 상황 전파 네트워크는 상황 인식 및 결정에서 이전 상황이 현재 상황에 미치는 영향을 고려하는 것과 유사하게 상황발생 확률분포함수를 보상해 줌으로써 상황의 전개가 연속적이면서 자연스러운 흐름을 갖도록 해준다. 본 논문에서는 평범한 직장인이 집이라는 공간에서 발생시키는 상황 데이터를 생성하는 모델을 제안하였고, 모의실험을 통해 상황 전파 네트워크가 상황의 자연스러운 흐름에 얼마나 영향을 기여하는지 확인하였으며, 특히, 순차적 상황 모호성과 충돌성 지표를 새롭게 정의하여 제안한 상황 데이터 생성 모델을 평가했다. 결론적으로 상황 전파 네트워크를 결합시켰을 경우, 확률 모델만을 사용했을 때보다 순차적 상황 모호성은 6.45% 상황 충돌성은 4.60% 감소함을 확인했다.
점착성 유사는 응집현상을 통해 크기와 밀도를 바꾸고 이에 따라 부유 및 이동에 큰 영향을 미치는 침강속도가 지속적으로 변화한다. 따라서 점착성 유사의 거동을 이해하기 위해서는 응집현상에 대한 고려가 필수적으로 이루어져야 한다. 현재까지 이루어진 응집현상 모형은 크게 Population balance equation type 모형(PBE)과 Floc growth type 모형(FGM)으로 나뉜다. PBE 모형은 점착성 유사의 입도분포를 모의할 수 있는 장점이 있는 반면에 닫힌 계에서 질량보존을 만족시키지 못하는 단점을 가진다. FGM 모형은 간단한 식을 통해 질량보존을 만족시키고 수치적으로 효율적인 모의를 할 수 있는 반면 입도분포를 모의할 수 없는 단점을 가진다. 이러한 장단점으로 인해 PBE 모형은 유사이동모형과 결합되어 이용된 사례가 없으며 FGM 모형은 유사이동모형과 결합되어 평균적인 점착성 유사의 거동만을 모의하는 연구에 이용되었다. 본 연구에서는 Stochastic floc growth type 모형(SFGM)의 개발에 따라 이해할 수 있는 점착성 유사이동의 특성과 이를 유사이동 모형과 결합시키는 방향에 대해 검토한다. 현재까지 진행된 연구 결과를 분석하면 SFGM은 질량보존을 만족시키면서도 점착성 유사의 입도분포를 모의할 수 있는 장점을 가지는 것으로 판단된다. 특히 난수발생의 단계에서 적절한 확률분포형을 선정하고 확률매개변수의 보정이 이루어지는 경우에는 높은 정확도를 가지는 입도분포 모의가 가능하다. 가는 모래를 대상으로 하는 비점착성 유사의 경우에는 추계학적인 유사이동 모형의 개발이 활발히 이루어져 왔다. 개발된 모형은 실제 측정값에 적용되어 다양한 학술적 가능성을 보여왔다. 따라서 SFGM의 개발이 점착성 유사의 이동모형과 결합되는 경우에는 점착성 유사가 지배적인 다양한 환경에서의 거동 특성을 이해할 때 매우 유용할 것으로 판단된다. 응집모형은 난류의 강도에 지배적인 영향을 받으며 유사의 입경 및 밀도 변화를 계산한다는 점을 고려할 때 유사이동 모형 역시 난류 강도에 대한 정보를 계산할 수 있는 지배방정식을 필요로 한다. 향후 개발될 추계학적 점착성 유사의 이동모형은 난류에 대한 정보, SFGM의 결합 등을 필요조건으로 가진다.
본 논문에서 제안한 예측형 RBFN(Radial Basis Function Network)은 HMM과 신경망을 결합한 하이브리드 구조이다. 이 신경망은 HMM으로 추정한 확률분포 파라미터를 사용하여 중간층의 활성화 함수의 출력을 결정하고, 중간층과 출력층의 연결강도만 네트워크 내에서 학습한다. 그리고 HMM으로 추정한 확률분포 파라미터는 두 가지 방법으로 예측형 RBFN에 이용하였다. 첫 번째는 HMM의 각 상태의 혼합수 만큼의 중간층 유니트를 주는 방법이고, 두 번째는 HMM의 혼합수$\times$출력분포수 만큼의 중간층 유니트를 주는 방법이다. 실험결과, 예측형 RBFN은 다른 방법들의 결과보다 $4.5\~6.5\%$ 저하된 결과를 보였지만 다른 신경망에 비해서 학습 반복 횟수를 작게할 수 있었으며 전체 학습시간을 대폭 단축할 수 있었다.
본 연구는 기초자산의 수익률이 정규분포가 아닌 급첨분포(leptokurtic distribution)를 따른다고 가정할 경우 옵션의 가격식을 도출한다. 두 정규분포의 확률밀도함수의 선형 결합으로 첨도가 3이 아닌 급첨분포의 확률밀도함수를 모델링하고 이를 이용하여 Black- Scholes 공식의 확장된 형태인 옵션 가격 공식을 유도한다. 본 논문에서 제시한 급첨분포에 의한 옵션가격모형은 변동성 스마일 성질을 설명할 뿐만 아니라 기존의 실증연구에서 제기된 Black-Scholes 옵션가격의 과대 및 과소평가 현상을 설명한다. 마지막으로 본 가격식의 모델적합성을 검증하기 위하여 KOSOI 200 지수옵션의 시장가격으로부터 내재변동성과 내재첨도를 추정한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.