• Title/Summary/Keyword: 결합재 비

Search Result 499, Processing Time 0.039 seconds

THE EFFECTS OF FLUORIDE RELEASING ORTHODONTIC SEALANT ON THE SHEAR BOND STRENGTH Of LIGHT-AND CHEMICAL-CURED ORTHODONTIC RESINS (불소가 유리되는 교정용 전색제가 광중합형 및 화학중합형 교정용 접착제의 전단결합강도에 미치는 영향)

  • Kim, Bong-Hyun;Yoon, Young-Jooh;Kim, Kwang-Won
    • The korean journal of orthodontics
    • /
    • v.27 no.5 s.64
    • /
    • pp.781-789
    • /
    • 1997
  • The purpose of this study was to evaluate the effects of fluoride relasing orthodontic sealant on the shear bond strength of light-and chemical-cured orthodontic rosins, to compare the shear bond strenth with light-and chemical-cured orthodontic resins, and to identify the changes of shear bond strength by rebonding in vitro. The brackets were divided into eight groups. Each group of metal brackets had different bonding mechanisms with adhesives. Group A : Transbond only Group B : Mono-Lok 2 only Group C : Light cured FluoroBond+Transbond Group D : Light cured FluoroBond+Mono-Lok 2 Group E : Transbond only(rebonded) Group F : Nomo-Lok 2 only(rebonded) Group G : Light cured FluoroBond+Transbond(rebonded) Group H : Light cured FluoroBond+Mono-Lok 2(rebonded) 65 extracted human premolars were prepared for bonding and 65 metal brackets for each group were bonded to prepared enamel surfaces of buccal surfaces as the above prescription. 24 hours bonding after, the Instron universal testing machine was used to test the shear bond strength of metal brackets to enamel. After debonding, same kind of metal brackets for each group were rebonded to prepared enamel surfaces of buccal surfaces to test the shear bond strength at the rebonding to enamel. Statistical analysis of the data was carried out Student's t-test ANOVA test, and Scheffe test using $SPSS/PC^+$ The results were as follows : 1. The order of shear bond strength was Group B(11.84MPa), Group A(10.75MPa), Group, D(9.69MPa), and Group C(9.39MPa)in lst bonded groups. 2. The order of shear bond strength was Group E(7.40MPa), Group G(6.48MPa), Group F(5.89MPa), and Group H(5.15MPa) in rebonded groups. 3. The shear bond strength of chemical cured orthodontic rosins had higher than that of light-cured orthodontic resins in all groups, but there was no statistical significance between groups(P>0.05). 4. In rebonded groups, the shear bond strength of light cured orthodontic rosins had higher than that of chemical cured orthodontic resins, but there was no statistical significance between groups(P>0.05). 5. The shear bond strength of all rebonded groups progressively decreased than that of 1st bonded groups, and there was statistical significance between groups(p<0.05, p<0.001).

  • PDF

Isogeometric Analysis of FG-CNTRC Plate in Bending based on Higher-order Shear Deformation Theory (탄소 나노튜브 보강 기능경사복합재 판의 등기하 거동 해석)

  • Jeon, Juntai
    • Journal of the Society of Disaster Information
    • /
    • v.17 no.4
    • /
    • pp.839-847
    • /
    • 2021
  • Purpose: This study investigates mechanical behavior of functionally graded (FG) carbon nanotube-reinforced composite (CNTRC) plate in flexure. Isogeometric analysis (IGA) method coupled with shear deformable theory of higher-order (HSDT) to analyze the nonlinear bending response is presented. Method: Shear deformable plate theory into which a polynomial shear shape function and the von Karman type geometric nonlinearity are incorporated is used to derive the nonlinear equations of equilibrium for FG-CNTRC plate in bending. The modified Newton-Raphson iteration is adopted to solve the system equations. Result: The dispersion pattern of carbon nanotubes, plate geometric parameter and boundary condition have significant effects on the nonlinear flexural behavior of FG-CNTRC plate. Conclusion: The proposed IGA method coupled with the HSDT can successfully predict the flexural behavior of FG-CNTRC plate.

A Study on the Durability Improvement of Highway-Subsidiary Concrete Structure Exposed to Deicing Salt and Freeze-Thaw (동결융해 및 제설제에 노출된 고속도로 소구조물 콘크리트의 내구성 개선 연구)

  • Lee, Byung-Duk;Choi, Yoon-Suk;Kim, Young-Geun;Choi, Jae-Seok;Kim, Il-Sun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.4
    • /
    • pp.128-135
    • /
    • 2016
  • In the current concrete structure of the highway is still the major problem most of concrete deterioration caused by the freeze-thaw and deicing salt, which is of issues that are not completely resolved. In particular, a single freezing event does not cause much harm, durability of concrete under multi-deterioration environment by repeated freeze-thaw and deicing salt is rapidly degraded and reduce its service life. In this study, the exposure environmental condition according the regional highway points were established. The damage condition and chloride content of the concrete at general and severe environmental exposure condition were also investigated. In addition, the experimental test of chloride ion permeability, scaling resistant and freeze-thaw resistance were carried out to improve the durability of the mechanical placing concrete of subsidiary structure. According to the results of this study, in observation of concrete surface condition, the concrete exposed by severe environmental condition showed broad ranges of damage with high chloride contents. Meanwhile, the water-binder(W/B) ratio and the less water content, and fly ash concrete than the specified existing mix proportion is significantly improved the durability. Also, the optimal mix proportion derived for test is satisfied the strength and air contents, water-binder ratio, and durability criteria of concrete specifications, as well as service life seems greatly improved.

Physical Properties of Insulating Composite Materials Using Natural Cellulose and Porous Ceramic Balls as a Core Materials (천연섬유질과 다공성 세라믹볼을 심재로 사용한 복합단열재의 물성)

  • Hwang, Eui-Hwan;Cho, Soung-Jun;Kim, Jin-Man
    • Applied Chemistry for Engineering
    • /
    • v.22 no.5
    • /
    • pp.501-507
    • /
    • 2011
  • To develop environmental-friendly insulating composite materials, natural cellulose and porous ceramic balls were used as core materials and activated Hwangtoh was used as a binder. Various specimens were prepared with different water/binder ratios and core material/binder ratios. The physical properties of these specimens were then investigated through compressive strengths, flexural strengths, absorption test, hot water resistance test, pore analysis, thermal conductivity, and observation of micro-structures using scanning electron microscope. Results showed that the maximum compressive strength varied appreciably with the water/binder ratios and core material/binder ratios, but the flexural strength increased with the core material/binder ratios regardless of water/binder ratios. The compressive strength and the flexural strength measured after the hot water resistance test decreased remarkably compared to those measured before test. The pore analysis measured after the hot water resistance test showed that total pore volume, porosity and average pore diameter decreased, while bulk density increased by the acceleration of hydration reaction of binder in the hot water. The thermal conductivity decreased gradually with an increase of core material/binder ratios. It can be evaluated that the composite insulation materials having good insulating properties and mechanical strengths can be used in the field.

Characteristics of the NO/$N_2O$ Nitrided Oxide and Reoxidized Nitrided Oxide for NVSM (비휘발성 기억소자를 위한 NO/$N_2O$ 질화산화막과 재산화 질화산화막의 특성에 관한 연구)

  • 이상은;서춘원;서광열
    • Journal of the Korean Vacuum Society
    • /
    • v.10 no.3
    • /
    • pp.328-334
    • /
    • 2001
  • The characteristics of $NO/N_2O$ nitrided oxide and reoxidized nitrided oxide being studied as super thin gate oxide and gate dielectric layers of nonvolatile semiconductor memory(NVSM) was investigated by dynamic secondary ion mass spectrometry(D-SMS), time-of-flight secondary ion mass spectrometry(ToF-SIMS), and x-ray photoelectron spectroscopy (XPS). The specimen was annealed in $NO/N_2O$ ambient after initial oxide process. The result of D-SIMS exhibits that the center of nitrogen exists at the initial oxide interface and the distribution of nitrogen is wider in the annealing process with $N_2O$ than with NO annealing process. For investigating the condition of nitrogen that exists within the nitrided oxide, ToF-SIMS and XPS analysis were carried out. It was shown that the center of nitrogen investigated by D-SIMS was expected the SiON chemical bonds. The nitrogen near the newly formed reoxide/silicon substrate interface was appeared as $Si_2NO$ chemical bonds, and it is agreed with the distribution of SiN and $Si_2NO$ species by ToF-SIMS.

  • PDF

An Experimental Study for Improving the Durability of Concrete Bridge Decks (교량 바닥판 콘크리트의 내구성 증진을 위한 실험적 연구)

  • Suh, Jin-Won;Rhee, Ji-Young;Ku, Bon-Sung;Shin, Do-Chul
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.4
    • /
    • pp.393-399
    • /
    • 2007
  • Concrete bridge decks are directly exposed to the severe environmental conditions such as rain water and deicing chemicals resulting in the freeze-thaw action and the rebar corrosion during their service lift. These deteriorations of bridge decks shorten the service lift and consequently they are the major concerns of the maintenance. The high performance concrete (HPC) deck is proposed as the alternative to minimize the deterioration problems. To develop more durable concrete deck, the performance characteristic tests of HPC mixtures were carried out. In this study, 4 different concrete mixtures were used varying the mineral admixtures as the cement replacement; ordinary portland cement (OPC), 20% fly ash (FA),20% fly ash with 4% silica fume (FS), and 40% ground granulated blast-furnace slag (BS). The design compressive strengths of HPC specimens were 27 MPa and 35 MPa, respectively. The results showed that the compressive strength of concrete did not much affect the durability of concrete. HPC with fly ash and silica lune (FS) were turned out to have the good durability and crack resistance.

족부보장구(A.F.O.)용 탄소섬유 강화재의 적층배향에 따른 정적인장강도의 특성

  • 황진우;송삼홍;김철웅;오동준
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.116-116
    • /
    • 2004
  • 편마비 환자의 보행운동 개선을 위한 보조기구로 족부보장구(Ankle Foot Orthosis, A.F.O.)가 활용되고 있다 족부보장구는 Fig. 1에 제시한 바와 같이 보행특성상 무수히 반복되는 충격과 굽힘하중을 받는다. 따라서 족부보장구용 재료는 피로특성이 우수한 탄소섬유 강화재(Carbon Fiber Reinforced Plastic, 이하 CFRP)를 주로 사용한다. 그러나 CFRP의 상용재인 프리프레그(prepreg)는 강한 이방성의 단방향 섬유이므로 섬유방향과 하중작용방향의 관계에 매우 민감하다.(중략)

  • PDF

THE EFFECTS OF DRYING AGENTS AND BONDING AGENTS ON THE SHEAR BOND STRENGTH OF SEALANTS TO ENAMEL (치면건조제와 접착제의 사용에 따른 치면열구전색재의 전단결합강도에 관한 연구)

  • Lim, Hyun-Hwa;Jang, Ki-Taek;Kim, Chong-Chul;Hahn, Se-Hyun
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.30 no.2
    • /
    • pp.196-203
    • /
    • 2003
  • The application of sealants is a highly technique-sensitive procedure, requiring an extremely dry field prior to placement. Moisture contamination of the etched enamel surface before sealant placement is cited as the main reason for sealant failure. The purpose of this study was to evaluate the effects of different methods of sealant application on the shear bond strength of sealants to enamel. In groups 1, 2, 3, 4 Teethmate(unfilled sealant) was used, while Ultraseal XTplus(filled sealant) was used in groups 5, 6, 7, 8. Groups 1 and 5(control) were acid etched for 15 seconds using 35% phosphoric acid, washed and then dried. In groups 2, 6 drying agents were applied, and in groups 3, 7 bonding agents were applied and light cured. In groups 4 and 8 both drying agent and bonding agent were applied. Then sealant was cured to the specimen using molds 3mm in diameter and 2mm in height. Thermocycling was performed and shear bond strength was finally measured. The following results were obtained : 1. Groups using filled sealant(groups 5, 6, 7, 8) showed higher shear bond strengths compared to groups using unfilled sealant(groups 1, 2, 3, 4). 2. Among groups using unfilled sealant(groups 1, 2, 3, 4), groups 2, 3, 4 showed significantly higher shear bond strength compared to group 1(p<0.05). There were no significant differences among groups 2, 3 and 4. 3. There were no significant differences(p>0.05) among groups using filled sealant(groups 5, 6, 7, 8). 4. When modes of fracture were examined, cohesive failure was observed in groups 2, 3 and 4.

  • PDF

A Study on the Quality Properties of Alkali-activated cement free Mortar using Industrial by-products (산업부산물을 사용한 알칼리 활성 무시멘트 모르타르의 품질특성에 관한 연구)

  • Kwon, Yong-Hun;Kwon, Yeong-Ho;Lee, Dong-Gyu
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.1 no.1
    • /
    • pp.58-66
    • /
    • 2013
  • This study investigated quality properties of alkali activated cement free mortar using industrial by-product such as cement kiln dust(CKD), silica fume(SF) and quartz sand powder(SP) to compare with previous research about blast furnace slag(BS) and fly ash(FA). The results were as following. All materials were effective to increase compressive strength, however they showed different tendency on flowability. CKD and SP increased flowability, but on the other hand SF did not because it's blain was great difference with other materials. Flowability and compressive strength were related with grading distributions of binders because CKD, SP and SF which had small particle size filled up BS and FA. Application of industrial by-products with various grading distributions could be effective for the high early strength and flowability of alkali activated cement free mortar using BS.

A Study on Characteristics of Flexural Behavior of High-strength Polymer Concrete Beams Using Recycled PET (PET 재활용 고강도 폴리머 콘크리트보의 휨거동에 관한 연구)

  • Cho Byung-Wan;Park Jong-Hwa;Park Seung-Kook;Bea Sung-Wan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.483-486
    • /
    • 2005
  • The polymer concrete is drawing a strong interest as high-performance materials in the construction industry. Resins using recycled PET offer the possibility of a lower source cost of materials for making useful polymer concrete products. Also the recycling of PET in polymer concrete would help solve some of the solid waste problems posed by plastics and save energy. Polymer concrete beams using unsaturated polyester resins based on recycled polyethylene terephthalate (PET) plastic waste were used in our study for grasping its structural behavior of static and fatigue. As a result of static test, Compression stress distribution of Polymer concrete indicates linear behavior such as triangles. Although polymer concrete is high strength materials, its ductility capacity is excellent. From the fatigue test results, There was almost no difference on flexural characteristics between before and after fatigue loading. Therefore, recycled PET polymer concrete remains excellent structural ability after fatigue loading.

  • PDF