Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
v.9
no.2
/
pp.860-862
/
2005
상용화되어 있는 대부분의 IDS는 오용 탐지 방법에 의한 것이다. 그러나 이러한 오용 탐지 방법에 의한 IDS는 침입패턴이 다양화되고 변형되기 때문에 긍정적 결함이 발생한다는 단점을 가지고 있다. 본 논문에서는 감사데이터간의 침입관계를 가지고 침입을 탐지하기 위해 데이터 마이닝 기법을 적용하여 침입 탐지 시 발생하는 긍정적 결함을 최소화 하였다. 따라서 감사데이터 학습단계에서 변형된 침입 패턴을 예측하기 위해서 데이터 마이닝 알고리즘을 적용한다.
Proceedings of the Korean Information Science Society Conference
/
2003.04a
/
pp.470-472
/
2003
상용화되어 있는 대부분의 IDS는 오용 탐지 방법에 의한 것이다. 그러나 이러한 오용 탐지 방법에 의한 IDS는 침입패턴이 다양화되고 변형되기 때문에 긍정적 결함이 발생한다는 단점을 가지고 있다. 본 논문에서는 감사데이터간의 침입 관계를 가지고 침입을 탐지하기 위해 데이터 마이닝 기법을 적용하여 침입 탐지 시 발생하는 긍정적 결항을 최소화 하였다. 따라서 감사데이터 학습단계에서 변형된 침입 패턴을 예측하기 위해서 데이터 마이닝 알고리즘을 적응한다.
Proceedings of the Korea Institutes of Information Security and Cryptology Conference
/
2001.11a
/
pp.166-169
/
2001
광범위한 인터넷의 발달은 우리의 생활을 윤택하게 해주었지만, 불법적인 침입, 자료 유출 등 범죄도 늘었다. 이에 따라 불법적인 침입을 막는 침입탐지기술도 많이 발전하게 되었다. 침입탐지기술은 크게 오용탐지방법과 비정상적인 행위 탐지 방법으로 나눌 수 있다. 본 논문에서는 비정상적인 행위 탐지 방법의 긍정적 결함을 줄이기 위한 방법으로 유사도 측정 알고리즘을 사용한 방법을 제시하고자 한다.
In this paper, we analyze the associated rule based deductive algorithm which creates the rules automatically for intrusion detection from the vast packet data. Based on the result, we also suggest the deductive algorithm which creates the rules of intrusion pattern fast in order to apply the intrusion detection systems. The deductive algorithm proposed is designed suitable to the concept of clustering which classifies and deletes the large data. This algorithm has direct relation with the method of pattern generation and analyzing module of the intrusion detection system. This can also extend the appication range and increase the detection speed of exiting intrusion detection system as the rule database is constructed for the pattern management of the intrusion detection system. The proposed pattern generation technique of the deductive algorithm is used to the algorithm is used to the algorithm which can be changed by the supporting rate of the data created from the intrusion detection system. Fanally, we analyze the possibility of the speed improvement of the rule generation with the algorithm simulation.
Journal of the Korea Institute of Information Security & Cryptology
/
v.13
no.4
/
pp.151-159
/
2003
Internet as being generalized, intrusion detection system is needed to protect computer system from intrusions synthetically. We propose an intrusion detection method to identify and control the contradiction on self-explanation that happen at profiling process of anomaly detection methodology. Because many patterns can be created on profiling process with association method, we present effective application plan through clustering for rules. Finally, we propose similarity function to decide whether anomaly action or not for user pattern using clustered pattern database.
Proceedings of the Korean Information Science Society Conference
/
2001.04b
/
pp.205-207
/
2001
웹 상의 HTML 문서들은 수시로 변경되고 있으며, 정보를 검색하는 웹사이트 또한 예외는 아니다. 다수의 웹 검색엔진들의 결과를 통합하는 메타 검색엔진은 각 검색엔진의 정보 변경에 민감해야 된다. 본 논문은, 수시로 변경되는 검색엔진들의 HTML 문서 정보를 메타 검색 엔진에 반영하기 위해, 자동적으로 검색엔진들의 질의 형태 변경과 검색 엔진의 검색 결과 HTML 문서의 구조 변경 탐지는 질의 결과가 반복되는 HTML 태그(tags) 문서 구조를 패턴(pattern)으로 이용한다. 패턴 발견 알고리즘은 문자열에서 규칙적으로 발생하는 패턴을 찾아내는 Jaak Vilo 알고리즘을 기반으로 HTML 문서를 처리할 수 있도록 확장하였다. 발견된 HTML 문서 패턴과 기존의 검색 엔진 HTML 페이지의 구조적 패턴 정보를 비교하여 문서 구조 변경을 탐지한다.
침입탐지에 있어서 사용자 로그 분석은 중요한 주제로서, 기존의 연구들에서 클러스터링 기법들을 사용하여 저장된 사용자 로그들을 분석해왔다. 하지만, 이러한 방법은 고정된 사용자 패턴 분석에는 효율적이지만, 로그 스트림과 같이 무한히 생성되어 사용자 패턴이 변화하는 경우 변화하는 패턴을 분석할 수 없다. 본 연구에서는 무한히 생성되는 사용자 로그 스트림을 대상으로 실시간 침입탐지 방법을 제시한다. 사용자로그의 정보는 사용자 행동에 대한 특성값으로 표현되어, 이러한 특성값들에 대해 실시간 데이터 스트림 클러스터링을 수행하여 이들을 클러스터로 분류한다. 각 클러스터는 사용자의 정상로그에 대한 특성값을 반영하게 되며, 그 결과 과거 사용자 로그에 대한 저장없이 새로운 로그 스트림을 지속적으로 분석할 수 있다. 결과적으로 사용자의 비정상행동을 실시간으로 탐지할 수 있으며, 이를 실험을 통해 평가하였다.
Proceedings of the Korean Information Science Society Conference
/
2001.10a
/
pp.640-642
/
2001
침입 탐지 시스템의 초점이 호스트와 운영체제 탐지에서 네트워크 탐지로 옮겨가고 있고 단순만 오용 탐지 기법에서 이를 개선한 지능적인 비정상 행위 탐지 기법에 관한 연구들이 진행되고 있다. 이러한 연구들 중에는 네트워크 프로토콜의 트래픽 특성을 이용하여 비표준 포트의 사용이나 표준 포트에 대한 비표준 방법에 의한 침입을 탐지하고자 하는 노력도 있다. 본 연구에서는 실시간으로 패턴 매칭이 가능하고, 적응력이 뛰어난 신경망 알고리즘을 이용하여 네트워크 서비스들에 대한 트래픽을 수집, 특성에 따라 분석.클러스터링하고 그 결과를 바탕으로 보다 향상된 침입 탐지가 가능한 시스템을 제안한다.
In streaming data analysis, detecting concept drift accurately is important to maintain the performance of classification model. Error rates are usually used for concept drift detection. However, by describing prediction results with only binary values of 0 or 1, useful information about a behavior pattern of a classifier can be lost. In this paper, we propose an effective concept drift detection method which describes performance pattern of a classifier by utilizing probability estimates for class prediction and detects a significant change in a classifier behavior. Experimental results on synthetic and real streaming data show the efficiency of the proposed method for detecting the occurrence of concept drift.
Journal of the Korea Institute of Information Security & Cryptology
/
v.16
no.1
/
pp.115-122
/
2006
The most methods for intrusion detection are based on the misuse detection which accumulates hewn intrusion information and makes a decision of an attack against any behavior data. However it is very difficult to detect a new or modified aoack with only the collected patterns of attack behaviors. Therefore, if considering that the method of anomaly behavior detection actually has a high false detection rate, a new approach is required for very huge intrusion patterns based on sequence. The approach can improve a possibility for intrusion detection of known attacks as well as modified and unknown attacks in addition to the similarity measurement of intrusion patterns. This paper proposes a method which applies the multiple sequence alignments technique to the similarity matching of the sequence based intrusion patterns. It enables the statistical analysis of sequence patterns and can be implemented easily. Also, the method reduces the number of detection alerts and false detection for attacks according to the changes of a sequence size.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.