• Title/Summary/Keyword: 결함 예측

검색결과 15,891건 처리시간 0.038초

객체지향 메트릭을 이용한 결함 예측 모형의 임계치 설정에 관한 실험 (An Experiment for Determining Threshold of Defect Prediction Models using Object Oriented Metrics)

  • 김윤규;채흥석
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제15권12호
    • /
    • pp.943-947
    • /
    • 2009
  • 소프트웨어의 결함을 예측하고 검증과 확인 활동을 통하여 효율적인 자원을 관리하기 위하여 많은 연구에서 결함 예측 모형을 제안하고 있다. 하지만 기존의 연구는 예측율이 최대 효과를 보이는 임계치에 결함 예측 모형의 예측율을 평가하고 있다. 이는 측정 시스템의 결함 정보를 알고 있는 가정하에서 평가가 이루어지는 것이기 때문에 실제 결함 정보를 알 수 없는 시스템에서는 최적의 임계치를 결정할 수 없다. 그러므로 임계치 선정의 중요성을 확인하기 위하여 본 연구에서는 결함 예측 모형으로 타 시스템의 결함을 예측하는 비교 실험을 하였다. 실험은 기존에 제안된 3개의 결함 예측 모형과 4개의 시스템을 대상으로 하였고 결함 예측 모형의 임계치별 예측의 정확성을 비교하였다. 실험결과에서 임계치는 모형의 예측율과 높은 관련이 있었지만 실제 결함 정보가 확인 안 되는 시스템에 대하여 결함을 예측하는 경우에는 임계치를 선정할 수 없음을 확인하였다. 따라서 결함 예측 모형을 타 시스템에 적용하기 위하석 임계치 선정에 관한 추후 연구가 필요함을 확인하였다.

소프트웨어 통합테스트를 위한 결함예측모델 설계 (A Design of Fault Prediction Model for Software Integration Test)

  • 김명신;강동수;백두권
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2010년도 춘계학술발표대회
    • /
    • pp.969-972
    • /
    • 2010
  • 소프트웨어 제품의 품질을 보장하기 위해서는 제품을 개발하는 단계에 미리 결함율을 예측하여 원하는 수준의 품질을 확보하는 것이 중요하다. 결함은 사용자의 요구사항이 제품으로 구현되고 기능에 대한 테스트가 수행되는 단계에 가장 객관적이며 정량적으로 관리될 수 있다. 따라서 본 논문에서는 통합테스트에 대한 계획을 수립하는 단계에 제품에 대한 결함율을 미리 예측하여 제품 결함율이 조직의 관리범위에 들어올 수 있도록 통제하는 결함예측모델을 제안한다. 조직의 제품 결함율 베이스라인을 설정하고 통합테스트 결함율에 영향을 미치는 변수들과의 회귀분석을 통해 통합테스트 결함예측모형을 구축한다. 또한 제품 결함율에 영향을 미치는 변수들과의 회귀분석을 통해 제품 결함예측모형을 구축하고 결함예측모형을 활용해 제품 결함율을 분석 및 통제한다. 본 논문에서 제안한 결함예측모델은 실제 프로젝트에 적용하여 실효성을 검증하였으며 제품이 완성되기 전에 결함율을 예측하여 통제할 수 있게 함으로써 소프트웨어 품질을 향상한다.

객체지향 메트릭 기반인 결함 예측 모형의 범용성에 관한 실험적 연구 (An Experimental Study of Generality of Software Defects Prediction Models based on Object Oriented Metrics)

  • 김태연;김윤규;채흥석
    • 정보처리학회논문지D
    • /
    • 제16D권3호
    • /
    • pp.407-416
    • /
    • 2009
  • 검증과 확인을 통한 소프트웨어의 효율적인 관리를 지원하기 위하여 많은 연구들이 개발 초기 단계에 예측하기 위한 목적으로 연구를 하고 있다. 기존의 많은 연구들이 결함을 예측하기 위한 모형들을 제시했지만 기존의 연구에서는 결함 예측 모형을 다른 시스템에 범용적으로 적용이 가능한지에 대한 충분한 연구가 없었다. 또한 대부분의 결함 예측 모형은 모형 개발 당시와 같은 동일 시스템에서 예측력을 평가하였다. 그러므로 본 연구에서는 결함 예측 모형이 개발 당시와 다른 시스템에 범용적으로 적용될 수 있는지에 관하여 실험하였다. 실험은 3개의 실험 대상 시스템에 3개의 결함 예측 모형을 적용하여 예측력을 평가하였다. 실험 결과에서는 모형의 범용성에 대하여 찾을 수 없었다. 이는 모형의 개발 당시 시스템의 메트릭 분포가 실험 대상 시스템과 다르기 때문으로 분석된다. 따라서 결함 예측 모형을 타 시스템에도 적용할 수 있도록 결함 예측 능력의 범용성을 높이기 위한 추후 연구가 필요함을 확인하였다.

SAINT 기반의 소프트웨어 결함 예측 (Software Defect Prediction Based on SAINT)

  • ;주은정;이정화;류덕산
    • 정보처리학회 논문지
    • /
    • 제13권5호
    • /
    • pp.236-242
    • /
    • 2024
  • 소프트웨어 결함 예측(SDP)은 오류가 발생할 가능성이 있는 모듈을 사전에 식별하여 소프트웨어 개발의 효율을 높이고 있다. SDP에서의 주과제는 예측 성능을 향상시키는것에 있다. 최근 연구에서는 딥러닝 기법이 소프트웨어 결함 예측(SDP) 분야에 적용되어 있으며, 특히 구조화된 데이터를 분석하는 데 뛰어난 성능을 보이고 있는 SAINT 모델이 주목받고 있다. 본 연구는 SAINT 모델을 다른 주요 모델(XGBoost, Random Forest, CatBoost)과 비교하여 SDP에 적용 가능한 최신 딥러닝 기법을 조사하였다. SAINT는 일관되게 우수한 성능을 보여주며 결함 예측 정확도 향상에 효과적임을 입증하였다. 이 연구 결과는 실용적인 소프트웨어 개발 상황에서 결함 예측 방법론을 발전시킬 수 있는 SAINT의 잠재력을 강조하며, 교차 검증, 특성 스케일링, 비교 분석 등을 포함한 철저한 방법론을 통해 수행되었다.

객체지향 메트릭을 이용한 결함 예측 모형의 실험적 비교 (A Comparative Experiment of Software Defect Prediction Models using Object Oriented Metrics)

  • 김윤규;김태연;채흥석
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제15권8호
    • /
    • pp.596-600
    • /
    • 2009
  • 검증과 확인을 통한 소프트웨어의 효율적인 관리를 지원하기 위하여 객체지향 메트릭 기반의 결함 예측 모형이 많이 제안되고 있다. 제안된 모형은 주로 로지스틱 회귀분석으로 개발하였다. 그리고 개발된 모형의 결함 예측 정확도는 60${\sim}$70%이었다. 본 논문에서는 기존 결함 예측 모형의 효과를 확인하기 위하여 이클립스 3.3을 대상으로 개발된 모형과 유사한 방법으로 실험을 하였다. 실험 결과 모형의 정확성은 약 40%이었다. 이는 주장된 예측력보다 많이 낮은 수치이었다. 또한 단순 로지스틱 회귀분석이 다중 로지스틱 회귀분석보다 높은 예측력을 보였다.

결함 심각도에 기반한 소프트웨어 품질 예측 (Software Quality Prediction based on Defect Severity)

  • 홍의석
    • 한국컴퓨터정보학회논문지
    • /
    • 제20권5호
    • /
    • pp.73-81
    • /
    • 2015
  • 소프트웨어 결함 예측 연구들의 대부분은 입력 개체의 결함 유무를 예측하는 이진 분류 모델들에 관한 것들이다. 하지만 모든 결함들이 같은 심각도를 갖지는 않으므로 예측 모델이 입력 개체의 결함경향성을 몇 개의 심각도 범주로 분류할 수 있다면 훨씬 유용하게 사용될 수 있다. 본 논문에서는 전통적인 복잡도와 크기 메트릭들을 입력으로 하는 심각도 기반 결함 예측 모델을 제안하였다. 학습 알고리즘은 많이 사용되는 네 개의 기계학습 기법들을 사용하였으며, 모델 구조는 삼진 분류 모델로 하였다. 모델 성능 평가를 위해 실험 데이터는 두 개의 NASA 공개 데이터 집합을 사용하였고, 평가 측정치는 Accuracy를 이용하였다. 평가 실험 결과는 역전파 신경망 모델이 두 데이터 집합에 대해 각각 81%와 88% 정도의 Accuracy 값으로 가장 좋은 성능을 보였다.

고압 다이캐스팅 공정에서 제품 결함을 사전 예측하기 위한 기계 학습 기반의 공정관리 방안 연구 (Study on the Process Management for Casting Defects Detection in High Pressure Die Casting based on Machine Learning Algorithm)

  • 이승로;이승철;한도석;김낙수
    • 한국주조공학회지
    • /
    • 제41권6호
    • /
    • pp.521-527
    • /
    • 2021
  • 본 연구는 고압 다이캐스팅 공정에서 제품 결함을 사전에 예측하기 위한 기계 학습 기반의 공정 관리 모델 개발에 관한 연구이다. 모델은 이전 사이클에서의 온도를 입력받고, 사이클에 걸쳐서 나타나는 특징을 인식하여 다음 사이클의 결함 발생 여부를 예측한다. 기어 박스 형상에 대하여 제안된 알고리즘을 적용하여, 3 사이클의 정보를 통해서 98 .9%의 정확도와 96.8 %의 재현율로 제품 수축 결함을 사전에 예측하였다.

딥러닝 기반의 학습 성취 예측 모델 (Learning Achievement Prediction Model based on Deep Learning)

  • 이명숙;박주건;이주화
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2021년도 제63차 동계학술대회논문집 29권1호
    • /
    • pp.245-247
    • /
    • 2021
  • 최근 코로나 19로 인하여 온라인 강의가 증가하고 있으며 이를 활용한 학습 분석에 대한 연구가 활발히 진행되고 있다. 본 논문에서는 학습 분석 중 학습 결과에 영향을 미칠 수 있는 학습 활동 데이터를 수집하여 학습 결과를 예측하는 모델을 설계하고자 한다. 예측 모델은 기계학습을 이용하며 이전 학기의 학습 결과 데이터를 학습시켜 학습 결과에 영향을 미치는 학습 활동 데이터를 도출한다. 도출된 데이터를 이용하여 차후 학습자의 학습 결과를 예측한다. 학습 결과를 예측하기 위한 모델로 딥러닝의 DNN을 활용한다. 향후 연구로는 예측한 결과를 바탕으로 학습자의 학습 동기 부여와 학습 지도 방향을 정하는 것이다.

  • PDF

원격상관 기후지수를 이용한 금강유역 장기 강우량 예측 (Long-term rainfall prediction of Geum river basin using teleconnected climate indices)

  • 이정우;김남원;김철겸;이정은
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2018년도 학술발표회
    • /
    • pp.211-211
    • /
    • 2018
  • 미해양대기청 기후예측센터(Climate Prediction Center, NOAA)에서 제공하고 있는 기후지수(climate indices)를 예측인자로 하고 금강유역의 5~6월의 강우량을 예측대상으로 하는 원격상관기반 통계모형을 구축하였다. 1988년부터 2017년까지의 30년 자료에 대해 예측인자와 예측대상간의 시간지연상관분석을 수행한 결과 NAO(North Atlantic Oscillation), EP/NP(East Pacific/North Pacific Oscillation), EA(East Atlantic Pattern), WP(Western Pacific Index) 등과 상관성이 높은 것으로 분석되었으며, 이러한 시간지연 기후지수를 이용하여 4개월전에 5,6월 강수량을 예측할 수 있는 다중회귀모형을 개발하였다. 관측 강우량 아노말리가 큰 경우에는 다소 과소 예측되고, 아노말리가 작은 경우에는 다소 과다 예측되는 경향을 보였지만 관측 강우량과 예측 강우량간의 상관계수가 0.75로서 비교적 우수한 예측 결과를 나타내었다. 5~6월 강우량 아노말리의 3분위 예측성을 평가한 결과 평년이상 적중률은 77.8%, 평년수준은 81.8%로서 예측 성공률이 높았으며, 5, 6월 누적강우량이 매우 작았던 92년과 95년을 제외하고는 강우량이 적은 해에도 예측성이 우수하여 평년이하 적중률이 70.0%를 나타내었다. 따라서 본 개발모형은 최소 4개월 이전 선행시간을 가지고 늦봄, 초여름강우량을 예측할 수 있는 저비용의 가뭄 예측 도구로 유용하게 활용될 수 있을 것이다.

  • PDF

표면 손상을 입은 적층판의 강도 예측 및 분석 (Prediction and Analysis of Fracture Strength for Surface Flawed Laminates)

  • 최덕현;황운봉
    • Composites Research
    • /
    • 제16권5호
    • /
    • pp.15-20
    • /
    • 2003
  • 본 논문에서는 표면 손상을 입은 적층판의 파괴 강도를 결함이 없는 적층판의 파괴 강도와 결함이 있는 적층판의 파괴 강도를 이용하여 예측하였다. 이를 위해 고전 적층판 이론을 적용하여 적층판의 파괴 강도식을 단순화했으며 이를 표면 손상을 입은 적층판에 적용하였다. 단순화한 적층판의 파괴 강도 이론식의 검증을 위해 Lagace와 Tsai의 논문에서 측정한 데이터를 이용하였다. 또한, 표면 손상을 입은 적층판의 파괴 강도 예측식의 검증을 위해 실험을 수행하였다. 실험을 위해 표면 결함이 없는 적층판과 표면 결함이 있는 적층판을 제작하여 실험하였으며 이 결과를 예측식과 비교하였다. 시편의 섬유 방향은 인장 방향과 같은 방향으로 제작되었으며, 예측식과 실험 결과는 잘 일치하였다. 따라서 본 논문에서 예측만 표면 결함이 있는 적층판의 파괴 강도 예측식을 이용하여 복합재료가 사용되는 구조물이 표면 손상이 되었을 때 이 구조물의 파괴 강도를 예측할 수 있을 것이다.