• Title/Summary/Keyword: 결함 예측

Search Result 15,891, Processing Time 0.044 seconds

An Experiment for Determining Threshold of Defect Prediction Models using Object Oriented Metrics (객체지향 메트릭을 이용한 결함 예측 모형의 임계치 설정에 관한 실험)

  • Kim, Yun-Kyu;Chae, Heung-Seok
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.15 no.12
    • /
    • pp.943-947
    • /
    • 2009
  • To support an efficient management of software verification and validation activities, many defect prediction models have been proposed based on object oriented metrics. In order to apply defect prediction models, we need to determine a threshold value. Because we cannot know actually where defects are, it is difficult to determine threshold. Therefore, we performed a series of experiments to explore the issue of determining a threshold. In the experiments, we applied defect prediction models to other systems different from the system used in building the prediction model. Specifically, we have applied three models - Olague model, Zhou model, and Gyimothy model - to four different systems. As a result, we found that the prediction capabilities varied considerably with a chosen threshold value. Therefore, we need to perform a study on the determination of an appropriate threshold value to improve the applicably of defect prediction models.

A Design of Fault Prediction Model for Software Integration Test (소프트웨어 통합테스트를 위한 결함예측모델 설계)

  • Kim, Myeong-Shin;Kang, Dongsu;Baik, Doo-kwon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2010.04a
    • /
    • pp.969-972
    • /
    • 2010
  • 소프트웨어 제품의 품질을 보장하기 위해서는 제품을 개발하는 단계에 미리 결함율을 예측하여 원하는 수준의 품질을 확보하는 것이 중요하다. 결함은 사용자의 요구사항이 제품으로 구현되고 기능에 대한 테스트가 수행되는 단계에 가장 객관적이며 정량적으로 관리될 수 있다. 따라서 본 논문에서는 통합테스트에 대한 계획을 수립하는 단계에 제품에 대한 결함율을 미리 예측하여 제품 결함율이 조직의 관리범위에 들어올 수 있도록 통제하는 결함예측모델을 제안한다. 조직의 제품 결함율 베이스라인을 설정하고 통합테스트 결함율에 영향을 미치는 변수들과의 회귀분석을 통해 통합테스트 결함예측모형을 구축한다. 또한 제품 결함율에 영향을 미치는 변수들과의 회귀분석을 통해 제품 결함예측모형을 구축하고 결함예측모형을 활용해 제품 결함율을 분석 및 통제한다. 본 논문에서 제안한 결함예측모델은 실제 프로젝트에 적용하여 실효성을 검증하였으며 제품이 완성되기 전에 결함율을 예측하여 통제할 수 있게 함으로써 소프트웨어 품질을 향상한다.

An Experimental Study of Generality of Software Defects Prediction Models based on Object Oriented Metrics (객체지향 메트릭 기반인 결함 예측 모형의 범용성에 관한 실험적 연구)

  • Kim, Tae-Yeon;Kim, Yun-Kyu;Chae, Heung-Seok
    • The KIPS Transactions:PartD
    • /
    • v.16D no.3
    • /
    • pp.407-416
    • /
    • 2009
  • To support an efficient management of software verification and validation activities, much research has been conducted to predict defects in early phase. And defect prediction models have been proposed to predict defects. But the generality of the models has not been experimentally studied for other software system. In other words, most of prediction models were applied only to the same system that had been used to build the prediction models themselves. Therefore, we performed an experiment to explore generality of major prediction models. In the experiment, we applied three defects prediction models to three different systems. As a result, we cannot find their generality of defect prediction capability. The cause is analyzed to result from a different metric distribution between the systems.

Software Defect Prediction Based on SAINT (SAINT 기반의 소프트웨어 결함 예측)

  • Sriman Mohapatra;Eunjeong Ju;Jeonghwa Lee;Duksan Ryu
    • The Transactions of the Korea Information Processing Society
    • /
    • v.13 no.5
    • /
    • pp.236-242
    • /
    • 2024
  • Software Defect Prediction (SDP) enhances the efficiency of software development by proactively identifying modules likely to contain errors. A major challenge in SDP is improving prediction performance. Recent research has applied deep learning techniques to the field of SDP, with the SAINT model particularly gaining attention for its outstanding performance in analyzing structured data. This study compares the SAINT model with other leading models (XGBoost, Random Forest, CatBoost) and investigates the latest deep learning techniques applicable to SDP. SAINT consistently demonstrated superior performance, proving effective in improving defect prediction accuracy. These findings highlight the potential of the SAINT model to advance defect prediction methodologies in practical software development scenarios, and were achieved through a rigorous methodology including cross-validation, feature scaling, and comparative analysis.

A Comparative Experiment of Software Defect Prediction Models using Object Oriented Metrics (객체지향 메트릭을 이용한 결함 예측 모형의 실험적 비교)

  • Kim, Yun-Kyu;Kim, Tae-Yeon;Chae, Heung-Seok
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.15 no.8
    • /
    • pp.596-600
    • /
    • 2009
  • To support an efficient management of software verification and validation activities, many defect prediction models have been proposed based on object oriented metrics. They usually adopt logistic regression analysis, And, they state that the correctness of prediction is about 60${\sim}$70%, We performed a similar experiment with Eclipse 3.3 to check their prediction effectiveness, However, the result shows that correctness is about 40% which is much lower than the original results. We also found that univariate logistic regression analysis produces better results than multivariate logistic regression analysis.

Software Quality Prediction based on Defect Severity (결함 심각도에 기반한 소프트웨어 품질 예측)

  • Hong, Euy-Seok
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.5
    • /
    • pp.73-81
    • /
    • 2015
  • Most of the software fault prediction studies focused on the binary classification model that predicts whether an input entity has faults or not. However the ability to predict entity fault-proneness in various severity categories is more useful because not all faults have the same severity. In this paper, we propose fault prediction models at different severity levels of faults using traditional size and complexity metrics. They are ternary classification models and use four machine learning algorithms for their training. Empirical analysis is performed using two NASA public data sets and a performance measure, accuracy. The evaluation results show that backpropagation neural network model outperforms other models on both data sets, with about 81% and 88% in terms of accuracy score respectively.

Study on the Process Management for Casting Defects Detection in High Pressure Die Casting based on Machine Learning Algorithm (고압 다이캐스팅 공정에서 제품 결함을 사전 예측하기 위한 기계 학습 기반의 공정관리 방안 연구)

  • Lee, Seungro;Lee, Seungcheol;Han, Dosuck;Kim, Naksoo
    • Journal of Korea Foundry Society
    • /
    • v.41 no.6
    • /
    • pp.521-527
    • /
    • 2021
  • This study presents a process management method for the detection of casting defects during in high-pressure die casting based on machine learning. The model predicts the defects of the next cycle by extracting the features appearing over the previous cycles. For design of the gearbox, the proposed model detects shrinkage defects with data from three cycles in advance with 98.9% accuracy and 96.8% recall rates.

Learning Achievement Prediction Model based on Deep Learning (딥러닝 기반의 학습 성취 예측 모델)

  • Lee, Myung-Suk;Pak, Ju-Geon;Lee, Joo-Hwa
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.01a
    • /
    • pp.245-247
    • /
    • 2021
  • 최근 코로나 19로 인하여 온라인 강의가 증가하고 있으며 이를 활용한 학습 분석에 대한 연구가 활발히 진행되고 있다. 본 논문에서는 학습 분석 중 학습 결과에 영향을 미칠 수 있는 학습 활동 데이터를 수집하여 학습 결과를 예측하는 모델을 설계하고자 한다. 예측 모델은 기계학습을 이용하며 이전 학기의 학습 결과 데이터를 학습시켜 학습 결과에 영향을 미치는 학습 활동 데이터를 도출한다. 도출된 데이터를 이용하여 차후 학습자의 학습 결과를 예측한다. 학습 결과를 예측하기 위한 모델로 딥러닝의 DNN을 활용한다. 향후 연구로는 예측한 결과를 바탕으로 학습자의 학습 동기 부여와 학습 지도 방향을 정하는 것이다.

  • PDF

Long-term rainfall prediction of Geum river basin using teleconnected climate indices (원격상관 기후지수를 이용한 금강유역 장기 강우량 예측)

  • Lee, Jeongwoo;Kim, Nam Won;Kim, ChuI-Gyum;Lee, Jeong Eun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.211-211
    • /
    • 2018
  • 미해양대기청 기후예측센터(Climate Prediction Center, NOAA)에서 제공하고 있는 기후지수(climate indices)를 예측인자로 하고 금강유역의 5~6월의 강우량을 예측대상으로 하는 원격상관기반 통계모형을 구축하였다. 1988년부터 2017년까지의 30년 자료에 대해 예측인자와 예측대상간의 시간지연상관분석을 수행한 결과 NAO(North Atlantic Oscillation), EP/NP(East Pacific/North Pacific Oscillation), EA(East Atlantic Pattern), WP(Western Pacific Index) 등과 상관성이 높은 것으로 분석되었으며, 이러한 시간지연 기후지수를 이용하여 4개월전에 5,6월 강수량을 예측할 수 있는 다중회귀모형을 개발하였다. 관측 강우량 아노말리가 큰 경우에는 다소 과소 예측되고, 아노말리가 작은 경우에는 다소 과다 예측되는 경향을 보였지만 관측 강우량과 예측 강우량간의 상관계수가 0.75로서 비교적 우수한 예측 결과를 나타내었다. 5~6월 강우량 아노말리의 3분위 예측성을 평가한 결과 평년이상 적중률은 77.8%, 평년수준은 81.8%로서 예측 성공률이 높았으며, 5, 6월 누적강우량이 매우 작았던 92년과 95년을 제외하고는 강우량이 적은 해에도 예측성이 우수하여 평년이하 적중률이 70.0%를 나타내었다. 따라서 본 개발모형은 최소 4개월 이전 선행시간을 가지고 늦봄, 초여름강우량을 예측할 수 있는 저비용의 가뭄 예측 도구로 유용하게 활용될 수 있을 것이다.

  • PDF

Prediction and Analysis of Fracture Strength for Surface Flawed Laminates (표면 손상을 입은 적층판의 강도 예측 및 분석)

  • 최덕현;황운봉
    • Composites Research
    • /
    • v.16 no.5
    • /
    • pp.15-20
    • /
    • 2003
  • In this paper, the fracture strength of the surface damaged laminates was predicted by applying the fracture strengths of the unflawed and flawed laminates. For prediction, the theoretical equation about the fracture strength of laminates was simplified applying classical laminate theory and was applied to the surface damaged laminates. Lagace's and Tsai's experimental data were used for verifying the theoretical equation. Moreover, to verify the theoretical prediction, an experiment was performed. Surface unflawed laminate and flawed laminates were fabricated and the experiments were made and these results were compared with theoretical predictions. The specimens' fiber direction was same to the tensile direction and the theoretical predictions and the experimental results were showed good agreement. Therefore, by this equation, the fracture strength of structures made of composites will be able to be predicted when the surface of the structures was damaged.