• Title/Summary/Keyword: 결과예측

Search Result 20,663, Processing Time 0.043 seconds

Limitations of Applying Land-Change Models for REDD Reference Level Setting: A Case Study of Xishuangbanna, Yunnan, China (REDD 기준선 설정 시 토지이용변화 예측모형 적용의 한계: 중국 운남성 시솽반나 열대림 사례를 중심으로)

  • Kim, Oh Seok
    • Journal of the Korean Geographical Society
    • /
    • v.50 no.3
    • /
    • pp.277-287
    • /
    • 2015
  • This paper addresses limitations of land-change modeling application in the context of REDD (Reducing Emissions from Deforestation and forest Degradation). REDD is an international conservation policy that aims to protect forests via carbon credit generation and trading. In REDD, carbon credits are generated only if there is measurable quantied carbon sequestration activities that are additional to business-as-usual (BAU). A "reference level" is defined as simulated baseline carbon emissions for the future under a BAU scenario, and predictive land-change modeling plays an important role in constructing reference levels. It is tested in this research how predictive accuracies of two land-change models, namely Geographic Emission Benchmark (GEB) and GEOMOD, vary with respect to different spatial scales: Xishuangbanna prefecture and Yunnan province. The accuracies are measured by Figure of Merit. In this Chinese case study, it turns out that GEB's better performance is mainly due to quantity (e.g., how many hectares of forest will be converted to agricultural land?) rather than spatial allocation (e.g., where will the conversion happen?). As both quantity and allocation are crucial in REDD reference level setting it appears to be fundamental to systematically analyze accuracies of quantity and allocation independently in pursuit of accurate reference levels.

  • PDF

업종별 주가지수의 카오스 검정 및 비선형예측

  • Baek, Ung-Gi
    • The Korean Journal of Financial Management
    • /
    • v.14 no.1
    • /
    • pp.171-205
    • /
    • 1997
  • '80년대 중반 들어 주가지수 예측모형으로 애용되던 시계열 예측모형에 대한 근본적인 의문이 제기되었다. 이것은 기존 예측모형이 선형 데이터 생성과정을 기본가정으로 채택하고 있지만 진정한 데이터 생성과정은 비선형일 수도 있다는 점에서 출발한다. 주가지수의 변동을 유발하는 경제의 기본구조가 비선형임에도 불구하고 이를 선형모형으로 접근한다면 주가의 움직임을 제대로 설명할 수 없을 뿐만 아니라 이러한 설정오류는 모형의 신뢰성을 크게 손상시킨다. 이와 같은 점에 착안하여 본 연구는 업종별 주가지수의 비선형 검정을 통해 주가가 어떠한 형태의 경제구조에서 생성되었는지 여러 가지 방법으로 정정한다. 10개 업종지수의 검정결과 보험업을 제외한 대부분의 업종지수가 카오스 끌개를 보유하고 있다는 증거가 포착되었다. 표본외 예측을 위해서 국지적 가중회귀법을 채택하였는데 예측결과 모형에 따라 $6{\sim}7$개 업종에서 통상최소자승법보다 예측력 우위를 보였다.

  • PDF

Adjusted Gasoline Demand Forecasts: Artificial Neural Networks Approach (보정된 가솔린 수요예측치: 인공신경망적 접근)

  • 염창선
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.25 no.2
    • /
    • pp.77-83
    • /
    • 2002
  • 본 연구에서는 가솔린 시계열 예측전문가들이 수요를 예측하고, 더 나아가 직감적으로 행하고 있는 보정과정을 자동화하기 위해 신경망을 사용한다. 가솔린 수요 예측분야에서 보정을 위해 사용되는 전형적인 판단요소는 정부 에너지 절약 정책, 에너지 산업의 파업, 공휴일 등이 있다. 주요 추세가 순환신경망에 의해 예측되고 이들 판단요소의 효과가 다층신경망에 의해 탐지되어 보정된다. 가솔린 수요에 대한 실험결과는 보정과정을 갖는 예측구조가 하나의 신경망을 사용하는 예측구조 보다 더 나은 예측력을 보였다. 그리고 본 연구에서 제시한 접근방법이 순환신경망이나 ARIMA 모델을 사용하는 것보다 더 나은 결과를 가졌다.

The Study of Forecasting Game Usage Hours Using Time Series Analysis (시계열 분석을 이용한 게임 접속시간 예측 연구)

  • Kang, Kie-Ho;Kim, Pyeoung-Kee
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.15 no.5
    • /
    • pp.63-69
    • /
    • 2010
  • Forecasting game usages hours can supply good information resolving intensive server access and ensuring stable game service. In this paper, we applied various time series analysis methods to forecast game usage hours in 2009 on famous "Ion" and "Sudden Attack" games. According to the experiment, the seasonal variation method showed better performance forecasting actual usage hours.

Understanding the effect of LSTM hyperparameters tuning on Cryptocurrency Price Prediction (LSTM 모델의 하이퍼 파라미터가 암호화폐 가격 예측에 미치는 영향 분석)

  • Park, Jaehyun;Lee, Dong-Gun;Seo, Yeong-Seok
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2021.05a
    • /
    • pp.466-469
    • /
    • 2021
  • 최근 암호화폐가 발전함에 따라 다양한 연구들이 진행되고 있지만 그 중에서도 암호화폐의 가격 예측 연구들이 활발히 진행되고 있다. 특히 이러한 예측 분야에서도 인공지능 기술을 접목시켜 암호화폐 가격의 예측 정확도를 높이려는 노력들이 지속되고 있다. 인공지능 기반의 기법들 중 시간적 정보를 가진 데이터를 기반으로 하고 있는 LSTM(Long Short-Term Memory) 모델이 다각도로 활용되고 있으나 급등락하는 암호화폐 가격 데이터가 많을 경우에는 그 성능이 상대적으로 낮아질 수 밖에 없다. 따라서 본 논문에서는 가격이 급등락하고 있는 Bitcoin, Ethereum, Dash 암호화폐 데이터 환경에서 LSTM 모델의 예측 성능이 향상될 수 있는 세부 하이퍼 파라미터 값을 실험 및 분석하고, 그 결과의 의미에 대해 고찰한다. 이를 위해 LSTM 모델에서 향상된 예측률을 보일 수 있는 epoch, hidden layer 수, optimizer 에 대해 분석하였고, 최적의 예측 결과를 도출해 줄 수 있는 최소 training data 개수도 함께 살펴보았다.

Improved CCLM by Considering Neighboring Pixel Information (주변 화소 정보를 추가로 고려한 CCLM 의 예측 성능 향상 방법)

  • Lee, Jeehwan;Kim, Bumyoon;Jeon, Byeungwoo
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2021.06a
    • /
    • pp.357-358
    • /
    • 2021
  • 본 논문에서는 VVC(Versatile Video Coding)의 색차 채널을 위한 화면 내 예측 모드 중 하나인 CCLM (Cross-Component Linear Model) 모드의 부호화 성능을 향상시킬 수 있는 방법을 제안하였다. 기존의 CCLM 모드는 예측과정에서 대응 휘도 영역의 화소로만 색차 블록의 예측자를 생성하기 때문에 현재 색차 블록과 그 주변의 참조 화소와의 연관성을 고려하지 않는 문제점이 있다. 본 논문에서는 참조 화소를 사용하는 예측 모드를 유도하여 예측자를 생성한 후 기존 CCLM 을 통해 생성된 예측자와 가중 결합하는 방법을 제안함으로써 문제점을 극복하고 부호화 성능의 향상을 가져오고자 한다. 실험 결과 제안 방법은 기존 VVC 방법 대비 BDBR 측면에서 Y(0.10%), Cb(-0.22%), Cr(-0.22%)의 결과를 얻을 수 있었다.

  • PDF

Prediction of Movies Box-Office Success Using Machine Learning Approaches (머신 러닝 기법을 활용한 박스오피스 관람객 예측)

  • Park, Do-kyoon;Paik, Juryon
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2020.01a
    • /
    • pp.15-18
    • /
    • 2020
  • 특정 영화의 스크린 독과점이 꾸준히 논란이 되고 있다. 본 논문에서는 영화 스크린 분배의 불평등성을 지적하고 이에 대한 개선을 요구할 근거로 머신러닝 기법을 활용한 영화 관람객 예측 모델을 제안한다. 이에 따라 KOBIS, 네이버 영화, 트위터, 구글 트렌드에서 수집한 3,143개의 영화 데이터를 이용하여 랜덤포레스트와 그라디언트 부스팅 기법을 활용한 영화 관람객 예측 모델을 구현하였다. 모델 평가 결과, 그라디언트 부스팅 모델의 RMSE는 600,486, 랜덤포레스트 모델의 RMSE는 518,989로 랜덤포레스트 모델의 예측력이 더 높았다. 예측력이 높았던 랜덤포레스트 모델을 활용, 상영관을 크게 확보하지 못 했던 봉준호 감독의 영화 '옥자'의 상영관 수를 조절하여 관람객 수를 예측, 6,345,011명이라는 결과를 제시한다.

  • PDF

A Study on the Recognition of Korean Numerals Using Recurrent Neural Predictive HMM (회귀신경망 예측 HMM을 이용한 숫자음 인식에 관한 연구)

  • 김수훈;고시영;허강인
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.8
    • /
    • pp.12-18
    • /
    • 2001
  • In this paper, we propose the Recurrent Neural Predictive HMM (RNPHMM). The RNPHMM is the hybrid network of the recurrent neural network and HMM. The predictive recurrent neural network trained to predict the future vector based on several last feature vectors, and defined every state of HMM. This method uses the prediction value from the predictive recurrent neural network, which is dynamically changing due to the effects of the previous feature vectors instead of the stable average vectors. The models of the RNPHMM are Elman network prediction HMM and Jordan network prediction HMM. In the experiment, we compared the recognition abilities of the RNPHMM as we increased the state number, prediction order, and number of hidden nodes for the isolated digits. As a result of the experiments, Elman network prediction HMM and Jordan network prediction HMM have good recognition ability as 98.5% for test data, respectively.

  • PDF

미래를 위한 선택(I)

  • Lee, Seong-Guk;Lee, Won-Ung
    • ETRI Journal
    • /
    • v.7 no.3
    • /
    • pp.68-82
    • /
    • 1985
  • 미래는 과거와 현재역사의 연속이다. 미래를 정확히 예측한다거나 예견할 수는 없다. 신이 아닌이상 지시할 수도 없다. 문제는 우리가 미래에 대해서 얼마나 관심을 가지고 있느냐가 문제이다. 우리 사회의 특성을 나타내는 급격하고도 커다란 변화들은 역설적인 결과를 초래할 수 있다. "미래대안"을 예측함으로써 이러한 혼돈된 결과를 줄이는데 도움이 될 수 있을 것이다. 본고에서는 이러한 분야에서 세계적으로 명성이 있는 여덟명의 석학-Zbigniew Brzezinski, Herman Kahn, Anthony J. Wiener, Daniel Bell, Willis Harman, Dennis Meadows, Willam Brown 그리고 Leon Martel-들의 장기예측 방법들을 평가, 분석하여 "Options for The Future"란 책을 펴낸 Tomas E. Jones의 견해를 중심으로 미래연구의 시작과 개발 그리고 예측방법론들을 정리해 보았다.

  • PDF

Stochastic Prediction of Rolling of Ships in Irregular Waves (불규칙 해상의 선박 횡요의 확률론적 예측)

  • Gwon, Sun-Hong;Kim, Dae-Ung
    • Journal of Ocean Engineering and Technology
    • /
    • v.5 no.2
    • /
    • pp.51-57
    • /
    • 1991
  • 불규칙 해상에서 선박의 큰 횡요각의 예측이 중요한 과제로 대두 되고 있다. 본 논문에서는 통계적 해석에 의한 이의 예측 방법을 제시한다. 즉 주어진 비 선형 횡요운동 방정식으로 부터 배의 횡요각과 각속도의 결합 확률 밀도 함수를 구하는 방법을 도입하고 각종 계수들의 값의 변화에 따른 예측 결과를 다른 논문에서 제시한 시뮬레이션 결과와 비교하였다.

  • PDF