• Title/Summary/Keyword: 결과값 예측기

Search Result 530, Processing Time 0.029 seconds

The study of blood glucose level prediction model using ballistocardiogram and artificial intelligence (심탄도와 인공지능을 이용한 혈당수치 예측모델 연구)

  • Choi, Sang-Ki;Park, Cheol-Gu
    • Journal of Digital Convergence
    • /
    • v.19 no.9
    • /
    • pp.257-269
    • /
    • 2021
  • The purpose of this study is to collect biosignal data in a non-invasive and non-restrictive manner using a BCG (Ballistocardiogram) sensor, and utilize artificial intelligence machine learning algorithms in ICT and high-performance computing environments. And it is to present and study a method for developing and validating a data-based blood glucose prediction model. In the blood glucose level prediction model, the input nodes in the MLP architecture are data of heart rate, respiration rate, stroke volume, heart rate variability, SDNN, RMSSD, PNN50, age, and gender, and the hidden layer 7 were used. As a result of the experiment, the average MSE, MAE, and RMSE values of the learning data tested 5 times were 0.5226, 0.6328, and 0.7692, respectively, and the average values of the validation data were 0.5408, 0.6776, and 0.7968, respectively, and the coefficient of determination (R2) was 0.9997. If research to standardize a model for predicting blood sugar levels based on data and to verify data set collection and prediction accuracy continues, it is expected that it can be used for non-invasive blood sugar level management.

Numerical Simulation of an Electric Thruster Plume Behavior Using the PIC-DSMC Method (PIC-DSMC 방법을 이용한 전기추력기 플룸 해석)

  • Kang, Sang Hun;Jun, Eunji
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.4
    • /
    • pp.1-11
    • /
    • 2021
  • To develop technologies for the stable operation of electric propulsion systems, the exhaust plume behavior of electric thrusters was studied using PIC-DSMC(particle-in-cell and direct simulation Monte Carlo). For the numerical analysis, the Simple Electron Fluid Model using Boltzmann relation was employed, and the charge and momentum exchanges due to atom-ion collisions were considered. The results of this study agreed with the plasma potentials measured experimentally. Near the thruster exit, active collisions among particles and charge exchanges created slow ions and fast atoms, which were expected to significantly affect the trajectory and velocity of the thruster exhaust plume.

Real-time Aircraft Upset Detection and Prevention Based On Extended Kalman Filter (확장칼만필터를 이용한 항공기 비정상 비행상황 판단 및 방지를 위한 실시간 대처법 연구)

  • Woo, Beomki;Park, On;Kim, Seungkeun;Suk, Jinyoung;Kim, Youdan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.9
    • /
    • pp.724-733
    • /
    • 2017
  • Accidents caused by upset condition leads to fatal damage to both manned and unmanned aircraft. This paper deals with real-time detection of these aircraft upset situations to prevent further severe situations. Firstly, the difference between sensor measurement and predicted measurement from Extended Kalman filter is monitored to determine whether a target aircraft goes into an upset condition or not. In addition, repeating the time update stage of the Extended Kalman filter for a specific length of time can enable future upset situation prediction. The results of aforementioned both the approaches will build a bridge to upset prevention for future generation of manned/unmanned aircraft.

Measurement of the Device Properties of a Ionization Smoke Detector to Improve Predictive Performance of the Fire Modeling (화재모델링 예측성능 개선을 위한 이온화식 연기감지기의 장치물성 측정)

  • Kim, Kyung-Hwa;Hwang, Cheol-Hong
    • Fire Science and Engineering
    • /
    • v.27 no.4
    • /
    • pp.27-34
    • /
    • 2013
  • The high prediction performance of fire detector models is essentially needed to assure the reliability of fire and evacuation modeling in the process of PBD (Performance Based fire safety Design). The main objective of the present study is to measure input information in order to predict the accurate activation time of smoke detector into a Large Eddy Simulation (LES) fire model such as FDS (Fire Dynamics Simulator). To end this, FDE (Fire Detector Evaluator) which can measure the device properties of detector was developed, and the input information of Heskestad and Cleary's models was measured for a ionization smoke detector. In addition, the activation times of smoke detectors predicted using default values into FDS and measured values in the present study were systematically compared. As a result, the device properties of smoke detector examined in the present study showed a significant difference compared to the default values used into FDS, which resulted in the considerable difference of up to 15 minutes or more in terms of the activation time of smoke detector. The database (DB) on device properties of various smoke and heat detectors will be built to improve the reliability of PBD in future studies.

Prediction of rainfall abstraction based on deep learning considering watershed and rainfall characteristic factors (유역 및 강우 특성인자를 고려한 딥러닝 기반의 강우손실 예측)

  • Jeong, Minyeob;Kim, Dae-Hong;Kim, Seokgyun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.37-37
    • /
    • 2022
  • 유효우량 산정을 위하여 국내에서 주로 사용되는 모형은 NRCS-CN(Natural Resources Conservation Service - curve number) 모형으로, 유역의 유출 능력을 나타내는 유출곡선지수(runoff curve number, CN)와 같은 NRCS-CN 모형의 매개변수들은 관측 강우-유출자료 또는 토양도, 토지피복지도 등을 이용하여 유역마다 결정된 값이 사용되고 있다. 그러나 유역의 CN값은 유역의 토양 상태와 같은 환경적 조건에 따라 달라질 수 있으며, 이를 반영하기 위하여 선행토양함수조건(antecedent moisture condition, AMC)을 이용하여 CN값을 조정하는 방법이 사용되고 있으나, AMC 조건에 따른 CN 값의 갑작스런 변화는 유출량의 극단적인 변화를 가져올 수 있다. NRCS-CN 모형과 더불어 강우 손실량 산정에 많이 사용되는 모형으로 Green-Ampt 모형이 있다. Green-Ampt 모형은 유역에서 발생하는 침투현상의 물리적 과정을 고려하는 모형이라는 장점이 있으나, 모형에 활용되는 다양한 물리적인 매개변수들을 산정하기 위해서는 유역에 대한 많은 조사가 선행되어야 한다. 또한 이렇게 산정된 매개변수들은 유역 내 토양이나 식생 조건 등에 따른 여러 불확실성을 내포하고 있어 실무적용에 어려움이 있다. 따라서 본 연구에서는, 현재 사용되고 있는 강우손실 모형들의 매개변수를 추정하기 위한 방법을 제시하고자 하였다. 본 연구에서 제시하는 방법은 인공지능(AI) 기술 중 하나인 딥러닝(deep-learning) 기법을 기반으로 하고 있으며, 딥러닝 모형으로는 장단기 메모리(Long Short-Term Memory, LSTM) 모형이 활용되었다. 딥러닝 모형의 입력 데이터는 유역에서의 강우특성이나 토양수분, 증발산, 식생 특성들을 나타내는 인자이며, 모의 결과는 유역에서 발생한 총 유출량으로 강우손실 모형들의 매개변수 값들은 이들을 활용하여 도출될 수 있다. 산정된 매개변수 값들을 강우손실 모형에 적용하여 실제 유역들에서의 유효우량 산정에 활용해보았으며, 동역학파 기반의 강우-유출 모형을 사용하여 유출을 예측해보았다. 예측된 유출수문곡선을 관측 자료와 비교 시 NSE=0.5 이상으로 산정되어 유출이 적절히 예측되었음을 확인했다.

  • PDF

An Empirical Study on Prediction of the Art Price using Multivariate Long Short Term Memory Recurrent Neural Network Deep Learning Model (다변수 LSTM 순환신경망 딥러닝 모형을 이용한 미술품 가격 예측에 관한 실증연구)

  • Lee, Jiin;Song, Jeongseok
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.6
    • /
    • pp.552-560
    • /
    • 2021
  • With the recent development of the art distribution system, interest in art investment is increasing rather than seeing art as an object of aesthetic utility. Unlike stocks and bonds, the price of artworks has a heterogeneous characteristic that is determined by reflecting both objective and subjective factors, so the uncertainty in price prediction is high. In this study, we used LSTM Recurrent Neural Network deep learning model to predict the auction winning price by inputting the artist, physical and sales charateristics of the Korean artist. According to the result, the RMSE value, which explains the difference between the predicted and actual price by model, was 0.064. Painter Lee Dae Won had the highest predictive power, and Lee Joong Seop had the lowest. The results suggest the art market becomes more active as investment goods and demand for auction winning price increases.

Performance Limit of NPML Detection on High Density Optical Recording Channels (고밀도 광기록 채널에서의 NPML 검출 성능 한계 분석)

  • Yoon, Min-Young;Lee, Jae-Jin;Hong, You-Pyo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.8C
    • /
    • pp.569-574
    • /
    • 2008
  • Noise predictive maximum likelihood(NPML) detector embeds noise prediction! whitening process in the branch metric calculation of Viterbi detector and improves the reliability. In this paper, some high-density optical storage channels are examined, and appropriate NPML systems are designed for each channel.

Evaluation of multi-basin integrated learning method of LSTM for hydrological time series prediction (수문 시계열 예측을 위한 LSTM의 다지점 통합 학습 방안 평가)

  • Choi, Jeonghyeon;Won, Jeongeun;Jung, Haeun;Kim, Sangdan
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.366-366
    • /
    • 2022
  • 유역의 하천유량과 같은 수문 시계열을 모의 또는 예측하기 위한 수문 모델링에서 최근 기계 학습 방법을 활용한 연구가 활발하게 적용되고 있는 추세이다. 이러한 데이터 기반 모델링 접근법은 입출력 자료에서 관찰된 패턴을 학습하며, 특히, 장단기기억(Long Short-Term Memory, LSTM) 네트워크는 많은 연구에서 수문 시계열 예측에 대한 적용성이 검증되었으나, 장기간의 고품질 관측자료를 활용할 때 더 나은 예측성능을 보인다. 그러나 우리나라의 경우 장기간 관측된 고품질의 하천유량 자료를 확보하기 어려운 실정이다. 따라서 본 연구에서는 LSTM 네트워크의 학습 시 가용한 모든 유역의 자료를 통합하여 학습시켰을 때 하천유량 예측성능을 개선할 수 있는지 판단해보고자 하였다. 이를 위해, 우리나라 13개 댐 유역을 대상으로 대상 유역의 자료만을 학습한 모델의 예측성능과 모든 유역의 자료를 학습한 모델의 예측성능을 비교해 보았다. 학습은 2001년부터 2010년까지 기상자료(강우, 최저·최고·평균기온, 상대습도, 이슬점, 풍속, 잠재증발산)를 이용하였으며, 2011년부터 2020년에 대해 테스트 되었다. 다지점 통합학습을 통해 테스트 기간에 대해 예측된 각 유역의 일 하천유량의 KGE 중앙값이 0.74로 단일지점 학습을 통해 예측된 KGE(0.72)보다 다소 개선된 결과를 보여주었다. 다지점 통합학습이 하천유량 예측에 큰 개선을 달성하지는 못하였으며, 추가적인 가용 자료 확보와 LSTM 구성의 개선을 통해 추가적인 연구가 필요할 것으로 판단된다.

  • PDF

Development of a Peak Water Level Prediction Technique Using GANs : Application to Jamsu Bridge, Korea (GANs를 이용한 하천의 첨두수위 예측 기법 개발 : 잠수교 적용)

  • Lee, Seung Yeon;Kim, Young In;Lee, Seung Oh
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.416-416
    • /
    • 2020
  • 우리나라의 계절 특성상 여름철 집중호우가 쏟아지는 현상이 빈번하게 발생하는데 이러한 돌발홍수가 예고 없이 일어나 상습적으로 침수 피해를 입는 지역이 증가하고 있다. 본 연구에서 2009년 ~ 2019년 동안 서울시 침수 피해 사건 중심의 인터넷 기사를 기반으로 실제 침수 사례를 조사해본 결과, 침수가 가장 많이 발생한 순으로 반포동(26건), 대치동(25건), 잠실동(21건)으로 집계되었다. 침수피해가 가장 많은 반포동을 연구지역으로 선정하고 그 중 잠수교의 수위를 예측하는 연구를 진행하였다. 기존 연구에서는 수치모형에 비해 신속한 결과를 도출할 수 있는 자료 기반 모형 중 LSTM 기법을 많이 사용하였다. 그러나 이는 선행 시간이 길어질수록 첨두수위에서 과소추정된 것으로 분석된 취약점이 존재하였다(정성호 외, 2018). 본 연구에서는 이러한 단점을 보완하기 위해 GANs(Generative Adversarial Networks)를 이용하였다. GANs는 생성자와 감별자가 나뉘어 생성자가 실제 자료인 첨두수위에서의 잠수교의 수위를 학습하고 실제와 근접한 가상데이터를 결과로 생성하여 감별자는 그 생성된 미래의 잠수교의 수위가 실제인지 가상인지 판별하도록 학습시키는 신경망 구조이다. 사용한 수문자료는 한강홍수통제소, 기상청, 국립해양조사원에서 제공하는 최근 15년간의 (2005년~2019년) 수위, 방류량, 강수량, 조위 자료를 수집하였고 t-test와 상관성분석을 통해 사용한 인자 간의 유의미성 판단과 상관성을 분석했다. 또한, 민감도 분석 결과 시퀀스길이(5), 반복횟수(1000), 은닉층(10), 학습률(0.005)로 최적값을 선정하였다. 또한 학습구간(2005년~2014년)과 검증구간(2015~2019년)으로 나누어 상대적으로 높은 수위가 관측되는 홍수기의 3, 6, 9시간 후의 수위를 예측하고 오차 지표를 이용해 평가하였다. LSTM 기법으로 예측된 수위와 GANs로 예측된 수위를 비교한 결과 GANs으로 예측된 첨두수위에서의 정확도가 5% 정도로 향상되었다. 향후에는 다양한 영향인자와 다른 기법과의 결합을 고려한다면 보다 정확하게 수위를 예측하여 하천 주변 사회기반시설의 침수 피해를 감소시킬 것으로 판단된다.

  • PDF

Projections on climate internal variability and climatological mean using hourly time series (시단위 시계열을 이용한 기후 내적 변동성 및 기후학적 평균에 대한 예측)

  • Kim, Jongho;Doi, Manh Van
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.198-198
    • /
    • 2020
  • 기후 내적 변동성(Climate Internal Variability, CIV)은 기후를 이해하는 데 중요한 역할을 하며 기후예측에 있어 주요 불확실성 원인들 중 하나이다. 본 연구는 다양한 이산화탄소 배출 시나리오에 대해 CIV와 기후학적 평균(Climatological Mean, CM)을 추정하는 것을 목표로 한다. 확률론적 날씨생성기(Stochastic Weather Generator)를 이용하여 국내 40개 기상 관측소에 대해, 30년에 해당하는 시단위 시계열 100개 앙상블을 생성하였다. CIV는 Detrend 방법과 Differenced 방법을 이용하여 추정되었으며, noise 계산값과 비교하였다. 그 결과, CIV 값과 noise 값들 사이의 correlation이 매우 높았으며, 제시된 방법론이 신뢰할 수 있음을 검증하였다. 국내 40개 지역에 적용하여 계산된 CIV와 CM의 주요 결과는 다음과 같다. (1) 국내의 대부분의 지역에 있어 평균적으로 CM과 CIV는 미래에 증가할 것이며, 그 증가 정도는 RCP 8.5의 경우와 먼 미래END(2071-2100년) 기간에서 더 커질 것이다; (2) CM과 CIV의 미래 변화의 특성은 강수의 특성 지수에 따라 다르다. 강수량의 양을 나타내는 3개의 지수(총 강수량, totPr, 일 최대 강수량, maxDa 및 시간당 최대 강수량, maxHr)와 강수량의 발생일수를 나타내는 지수(무강우 일수, nonPr)의 특성은 크게 다르다. (3) CIV와 CM의 변화 요인들 사이의 관계를 조사하면 maxDa와 maxHr에 대해서는 그들 사이에 높은 상관관계가 있지만 다른 지수에는 그렇지 않다. (4) 국내에서 CIV 값이 공간적으로 변동성이 큰 경우는 계절적으로 여름이며, 이는 totPr 및 maxDa에서만 유효하다. 시단위 시계열 앙상블을 생성하여 추정된 기후내적변동성 정보는 기후 변화의 영향을 평가하고 적절한 적응 및 대응 전략을 개발하는 데 도움이 될 것이다.

  • PDF