DOI QR코드

DOI QR Code

Measurement of the Device Properties of a Ionization Smoke Detector to Improve Predictive Performance of the Fire Modeling

화재모델링 예측성능 개선을 위한 이온화식 연기감지기의 장치물성 측정

  • Kim, Kyung-Hwa (Department of Fire & Disaster Prevention Daejeon University) ;
  • Hwang, Cheol-Hong (Department of Fire & Disaster Prevention Daejeon University)
  • 김경화 (대전대학교 소방방재학과) ;
  • 황철홍 (대전대학교 소방방재학과)
  • Received : 2013.08.21
  • Accepted : 2013.08.28
  • Published : 2013.08.31

Abstract

The high prediction performance of fire detector models is essentially needed to assure the reliability of fire and evacuation modeling in the process of PBD (Performance Based fire safety Design). The main objective of the present study is to measure input information in order to predict the accurate activation time of smoke detector into a Large Eddy Simulation (LES) fire model such as FDS (Fire Dynamics Simulator). To end this, FDE (Fire Detector Evaluator) which can measure the device properties of detector was developed, and the input information of Heskestad and Cleary's models was measured for a ionization smoke detector. In addition, the activation times of smoke detectors predicted using default values into FDS and measured values in the present study were systematically compared. As a result, the device properties of smoke detector examined in the present study showed a significant difference compared to the default values used into FDS, which resulted in the considerable difference of up to 15 minutes or more in terms of the activation time of smoke detector. The database (DB) on device properties of various smoke and heat detectors will be built to improve the reliability of PBD in future studies.

성능위주 소방설계(PBD)의 과정에서 화재 및 피난모델링의 신뢰성을 확보하기 위해서는 화재감지기 모델의 높은 예측성능이 필수적으로 요구된다. 본 연구의 목적은 FDS와 같은 대와동모사(Large Eddy Simulation) 화재모델에 적용될 수 있는 연기감지기의 정확한 작동 개시시간을 예측하기 위한 수치적 입력정보를 측정하는 것이다. 이를 위해 화재감지기의 장치특성을 측정할 수 있는 FDE (Fire Detector Evaluator)를 제작하였으며, 이온화식 연기감지기에 대한 Heskestad 및 Cleary 모델의 입력변수가 측정되었다. 또한 일반적으로 사용되는 FDS의 기본 값과 측정된 값이 적용된 연기감지기의 작동 개시시간을 정량적으로 비교하였다. 주요 결과로써, 본 연구에서 검토된 이온화식 연기감지기의 장치 물성은 FDS에 적용된 기본 값과 매우 큰 차이를 보이고 있으며, 연기감지기 작동 개시시간이 최대 15분 이상 차이가 발생되었다. PBD의 신뢰성을 향상시키기 위하여 향후 연구에서는 보다 다양한 연기 및 열감지기의 장치물성에 대한 데이터베이스(DB)가 구축될 예정이다.

Keywords

References

  1. J. H. McGuire and G. T. Tamura, "Simple Analysis of Smoke Flow Problems in High Rise Buildings", Fire Technology, Vol. 11, pp. 15-22 (1975). https://doi.org/10.1007/BF02589997
  2. R. Custer, "Selection and Specification of the 'Design Fire' for Performance-Based Fire Protection Design", in Proceedings, SFPE Engineering Seminar, Phoenix, AZ, Society of Fire Protection Engineers, Boston (1993).
  3. K. McGrattan, R. McDermott, S. Hostikka and J. Floyd, "Fire Dynamics Simulator (Version 5) Technical Reference Guide", NIST Special Publication 1018-5, National Institute of Standards and Technology, Gaithersburg, MD (2010).
  4. M. Ahrens, "U.S. Experience with Smoke Alarms and Other Fire Detector/Alarm Equipment", NFPA (2004).
  5. V. T. D'souza, J. A. Sutula, S. M. Olenick, W. Zhang and R. J. Roby, "Predicting Smoke Detector Activation using the Fire Dynamics Simulator", Proceedings of the 7th International Symposium of Fire Safety Science (2002).
  6. F. W. Mowrer, "Lag Times Associated with Fire Detection and Suppression," Fire Technology, Vol. 26, No. 3, pp. 244-265 (1990). https://doi.org/10.1007/BF01040111
  7. C. E. Marrion, "Lag Time Modeling and Effects of Ceil-ing Jet Velocity on the Placement of Optical Smoke Detectors", Master's Thesis, Worcester Polytechnic Institute, Center for Fire safety Studies, Worcester, MA (1989).
  8. G. Heskestad, "Generalized Characterization of Smoke Entry and Response for Products of Combustion Detectors", Proceedings of the Fire Detection for Life Safety Symposium (1975).
  9. T. Cleary and A. Chernovsky, "Particulate Entry Lag in Spot-Type Smoke Detectors", Proceedings of 6th International Symposium, International Association for Fire Safety Science (IAFSS) (1999).
  10. T. Cleary, W. Grosshandler and A. Chernovsky, "Smoke Detector Response to Nuisance Aerosols", International Conference on Automatic Fire Design "AUBE '99', 11th, pp. 32-41 (1999).
  11. K. McGrattan, R McDermott, S. Hostikka and J. Floyd, "Fire Dynamic Simulator (Version 5): User's Guide", NIST SP 1019-5, NIST, Gaithersburg, MD (2010).
  12. G. W. Mulholland, E. L. Johnsson and M. G. Fernandez, "Design and Testing of New Smoke Concentration Meter", Reprinted from the Fire and Materials, Vol. 24, No. 5, pp. 231-243 (2000). https://doi.org/10.1002/1099-1018(200009/10)24:5<231::AID-FAM743>3.0.CO;2-N
  13. S. C. Kim, "Uncertainty Analysis of the Optical Smoke Density Measurement through the Doorway in a Compartment Fire", J. Kor. Inst. Fire Sci. Eng., Vol. 27, No. 2, pp. 75-79 (2013). https://doi.org/10.7731/KIFSE.2013.27.2.075
  14. A. Tewarson, "Generation of Heat and Chemical Compounds in Fires", SFPE Handbook of Fire Protecting Engineering, Social Fire Protection Engineers (1995).

Cited by

  1. Measurement of the Device Properties of Fixed Temperature Heat Detectors for the Fire Modeling vol.28, pp.1, 2014, https://doi.org/10.7731/KIFSE.2014.28.1.037