• Title/Summary/Keyword: 격자-볼츠만 법

Search Result 55, Processing Time 0.027 seconds

Investigation Into Aeolian Tone Noise by Twin Tandem Square Cylinders in duct Using Lattice Boltzmann Method (격자 볼츠만 방법을 이용한 덕트 내 쌍둥이 직렬배열 사각 실린더에 의한 Aeolian 순음소음 고찰)

  • Lee, Songjune;Cheong, Cheolung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.12
    • /
    • pp.962-968
    • /
    • 2014
  • The lattice Boltzmann method(LBM) has attracted attention as an alternative numerical algorithm for solving fluid mechanics since the end of the 90's. In these days, its intrinsic unsteadiness and rapid increase in computing power make the LBM be more applicable for computing flow-induced noise as well as fluid dynamics. The lattice Boltzmann method is a weakly compressible scheme, so we can get information about both aerodynamics and aeroacoustics from single simulation. In this paper, numerical analysis on Aeolian tone noise generated by tandem-twin square cylinders in duct is performed using the LBM. For simplicity, laminar two-dimensional fluid models are used. To verify the validity and accuracy of the current numerical techniques, numerical results for the laminar duct and the cylinder flows are compared with the analytical solution and the measurement, respectively. Then, aerodynamic noise of the twin tandem square cylinders is investigated. It is shown that the aerodynamic noise from the twin tandem square cylinders can be reduced by controlling the distance between the cylinders.

The Cubic-Interpolated Pseudo-Particle Lattice Boltzmann Advection-Diffusion Model (이류확산 방정식 계산을 위한 입방보간유사입자 격자볼츠만 모델)

  • Mirae, Kim;Binqi, Chen;Kyung Chun, Kim
    • Journal of the Korean Society of Visualization
    • /
    • v.20 no.3
    • /
    • pp.74-85
    • /
    • 2022
  • We propose a Cubic-Interpolated Pseudo-Particle Lattice Boltzmann method (CIP-LBM) for the convection-diffusion equation (CDE) based on the Bhatnagar-Gross-Krook (BGK) scheme equation. The CIP-LBM relies on an accurate numerical lattice equilibrium particle distribution function on the advection term and the use of a splitting technique to solve the Lattice Boltzmann equation. Different schemes of lattice spaces such as D1Q3, D2Q5, and D2Q9 have been used for simulating a variety of problems described by the CDE. All simulations were carried out using the BGK model, although another LB scheme based on a collision term like two-relation time or multi-relaxation time can be easily applied. To show quantitative agreement, the results of the proposed model are compared with an analytical solution.

An algebraic multigrids based prediction of a numerical solution of Poisson-Boltzmann equation for a generation of deep learning samples (딥러닝 샘플 생성을 위한 포아즌-볼츠만 방정식의 대수적 멀티그리드를 사용한 수치 예측)

  • Shin, Kwang-Seong;Jo, Gwanghyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.2
    • /
    • pp.181-186
    • /
    • 2022
  • Poisson-Boltzmann equation (PBE) is used to model problems arising from various disciplinary including bio-pysics and colloid chemistry. Therefore, to predict a numerical solution of PBE is an important issue. The authors proposed deep learning based methods to solve PBE while the computational time to generate finite element method (FEM) solutions were bottlenecks of the algorithms. In this work, we shorten the generation time of FEM solutions in two directions. First, we experimentally find certain penalty parameter in a bilinear form. Second, we applied algebraic multigrids methods to the algebraic system so that condition number is bounded regardless of the meshsize. In conclusion, we have reduced computation times to solve algebraic systems for PBE. We expect that algebraic multigrids methods can be further employed in various disciplinary to generate deep learning samples.

Feasibility Study on the Two-dimensional Free Surface Simulation Using the Lattice-Boltzmann Method (Lattice Boltzmann Method를 이용한 2차원 자유수면 시뮬레이션 기법연구)

  • Jung, Rho-Taek
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.15 no.4
    • /
    • pp.273-280
    • /
    • 2012
  • The numerical simulation using the Lattice Boltzmann Method in the field of computational fluid dynamics becomes wider in the engineering applications because of its simplicity of update rules compared to the conventional Navier-Stokes solvers. Here, a two-dimensional D2Q9 LB model is numerically tested with a few new computational treatment on the free surface. The single relaxation time is applied under the gravitational field where applied only in the higher density fluid because of its big density difference. At the free surface, the reconstruction techniques in combination with boundary conditions is adopted in order to get some distribution function coming into the fluid site from the air one, and surface tension, early stable test for the gravitional field is considered in it. With the implementation of the gravitational profile, conserving the overall mass and grid dependency are observed during the calculations and freesurface advance track is well captured with an experiment.

Study on the Thrust Generation of Flapping Flat Plates for Microscale Biomedical Swimming Robots (초소형 의공학용 유영로봇을 위한 플래핑 평판들의 추력 발생 연구)

  • An, Sang-Joon;Kim, Young-Dae;Maeng, Joo-Sung;Han, Cheol-Heui
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.415-420
    • /
    • 2007
  • Creatures in nature flap their wings to generate fluid dynamic forces that are required for the locomotion. Small-size creatures do not use flapping wings. Thus, it is questionable at which Reynolds number the propulsion using the flapping wings are effective. In this paper, the onset conditions of the thrust generation from the combined motion of flat plates (heaving, pitching in the motion and also tandem, biplane in the array) is investigated using a Lattice Boltzmann method. To solve the pitching motion of the plate on the regularly spaced lattices, 2-D moving boundary condition was implemented. The present method is validated by comparing the wake patterns behind a oscillating circular cylinder and its hydrodynamic characteristics with the CFD results. Present method can be applied to the design of micro flapping propulsors for biomedical use.

  • PDF

Numerical Study for Mixing Characteristics of an Oscillating Micro-stirrer (미소진동교반기의 혼합특성에 대한 수치적 연구)

  • Kim, Yong-Dae;Maeng, Joo-Sung
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.309-312
    • /
    • 2006
  • Effective mixing is an important problem in microfluidics for chemical and biomechanical applications. In this study, the influences of the Reynolds number and the oscillating frequency on mixing characteristics of micro-stirrer are studied in a microchannel with single stirrer. The influence of fluid inertial effects in an active mixer is first discussed. It is found that the stirring effects by stirrer oscillation are promptly attenuated at low Reynolds number, which makes greatly difficult the rapid mixing. As the inertial effects are increased, the chaotic advection is generated and then developed. The mixing phase is finally developed some mushroom shaped structure. And the mixing efficiency is also studied as a function of the oscillating frequency. We found that the mixing efficiency does not always increase with higher oscillating frequency of stirrer. Consequently, we found the functional relation between the optimal frequency of a stirrer and the Reynolds number.

  • PDF

A Numerical Study of Heat transfer and Flow Analysis for a Micro-channel in The Slip Flow Regime (Slip flow 영역에서의 미소채널 내 열전달 및 유동에 관한 수치적 연구)

  • Jeong, Soo-In;Kim, Kui-Soon;Kang, Boem-Soo
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.391-394
    • /
    • 2006
  • In this paper, the thermal lattice Boltzmann method(TLBM) proposed by Guo et al.(2002) is applied to analyze the forced convective flow and heat transfer of 2-D micro channel. Nonequilibrium extrapolation boundary condition is adopted to simulate the velocity and temperature behavior at wall boundaries. Numerical results obtained by the present study give a good prediction of the micro fluidic characteristics with thermal effects.

  • PDF

Numerical Simulation of Shock Propatation by the Finite Difference Lattice Boltzmann Method

  • Kang, Ho-Keun;Tsutahara, Michihisa;Kim, Jeong-Hwan;Lee, Young-Ho
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.468-474
    • /
    • 2001
  • The shock process represents an abrupt change in fluid properties, in which finite variations in pressure, temperature, and density occur over a shock thickness which is comparable to the mean tree path of the gas molecules involved. The fluid phenomenon is simulated by using finite difference lattice Boltzmann method (FDLBM). In this research, the new model is proposed using the lattice BGK compressible fluid model in FDLBM for the purpose of shortening in calculation time and stabilizing in simulation operation. The numerical results agree also with the theoretical predictions.

  • PDF

SIMULATION OF FREE SURFACE FLOW OVER TRAPEZOIDAL OBSTACLE WITH LATTICE BOLTZMANN METHOD (격자볼츠만법을 이용한 장애물 월반 자유수면 시뮬레이션)

  • Korkmaz, Emrah;Jung, Rho-Taek
    • Journal of computational fluids engineering
    • /
    • v.19 no.2
    • /
    • pp.79-85
    • /
    • 2014
  • An air-water free surface flow simulation by using the Lattice Boltzmann Method(LBM) has not been studied a lot compared with the done by the Navier-Stoke equation. This paper shows the LBM is as one of the application tools for the free surface movement over an obstacle. The Mezo scaled application tool has been developed with two dimensional and nine discretized velocity direction using conventional lattice Bhatnagar-Gross-Krook model. Boundary conditions of a halfway-based for solid wall and a kinematic-based for interface are adopted. A validation case with a trapezoidal shape bump to make a comparison between freesurface movements from computational results and experimental ones was described with grid size dependency.

Numerical Study on The Pressure Drop of Immiscible Two-Phase Flow in The Pressure Driven Micro Channel Using Lattice Boltzmann Method (Lattice Boltzmann 방법을 이용한 압력구동 미세채널 내 비혼합 2상 유체 흐름의 압력강하에 대한 수치적 연구)

  • Jeong, Soo-In;Kim, Kui-Soon;Kang, Beom-Soon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.436-439
    • /
    • 2008
  • Computer simulation of multiphase flows has grown dramatically in the last two decades. In this work, we have studied the flow characteristics of immiscible two fluids in a 2-D micro channel driven by pressure gradient using multi-phase lattice Boltzmann method suggested by Shan and Chen(1993) considering the fluid-surface interaction. we tried to examine the effects of parameters related to the two phase flow characteristics and pressure drop in the micro channel like contact angle and channel configuration by changing their value. The results of current study could show the lattice Boltzmann method can simulate the behaviors of two phase flow in the region of micro fluidics well.

  • PDF