• Title/Summary/Keyword: 격자 간섭계

Search Result 68, Processing Time 0.027 seconds

Fluorescent Pattern Generation on the Fluorescent Photopolymer with 2-beam Coupling Method (2-beam Coupling 방법을 이용한 광 고분자 형광 패턴 형성)

  • Kim, Yoon-Jung;Kim, Jeong-Hun;Sim, Bo-Yeon;Lee, Myeong-Kyu;Kim, Eun-Kyoung
    • Korean Journal of Optics and Photonics
    • /
    • v.21 no.1
    • /
    • pp.6-11
    • /
    • 2010
  • Fluorescent photopolymer film was prepared with composition containing acrylate monomer, binder, a visible light sensitive photo initiator, and fluorescent anthracene polymer. A fluorescent grating pattern was inscribed on the photopolymer film using a 2-beam coupling method. A 514 nm laser was coupled to generate a beam-interference pattern. A highly fluorescent diffractive line pattern was formed on the fluorescent photopolymer within 30 sec. of exposure. The fluorescence intensity was highly enhanced in the patterned area, possibly due to the change in the environment of the fluorescent polymers by the photo-polymerization of monomers. Under a photo-mask, a gap electrode pattern was formed of fluorescent gratings with a sub-micron scale, which was matched well to the calculated value ($2.5\;{\mu}m$ and $0.6\;{\mu}m$) based on the refractive index of the photopolymer and beam incident angle ($3.4^{\circ}$, $15^{\circ}$) to the photopolymer surface.

Investigation of the Lateral Acoustic Signal Detection Using by Two Fabry-Perot Fiber Optic Sensor Array (두 개의 Fabry-Perot 광섬유 센서 배열을 이용한 횡방향 음압 감지 특성 연구)

  • Lee, Jong kil
    • 대한공업교육학회지
    • /
    • v.31 no.1
    • /
    • pp.185-199
    • /
    • 2006
  • In this paper, to detect lateral direction sound pressure fiber optic sensor using Fabry-Perot interferometeric sensor array was fabricated and experimented. This parallel sensor array composed of one light source and the light split into each sensor using directional coupler and to see the output signal the array system do not need any digital signal processor. As a lateral direction sound source arbitrary sound frequency of 100Hz, 200Hz, and 655Hz using by nondirectional speaker were applied to the array sensor which installed on $60cm{\times}60cm{\times}60cm$ latticed structure. The detected signals from the two sensors were analyzed in the time and frequency domains. It was confirmed that the suggested sensor array detected applied sound source well but there were a little amplitude differences in between the sensors. Because the sensor supported simply at both ends theoretical analysis was performed and its solution was suggested. To compare the theoretical and experimental results arbitrary sound frequency of 2kHz was applied to the sensor array. It shows that experimental results was good agreement with theoretical results.

효율적인 무반사 특성을 갖는 주기적인 실리콘 계층 나노구조 제작 연구

  • Lee, Su-Hyeon;Im, Jeong-U;Gwan, Sang-U;Kim, Jeong-Tae;Yu, Jae-Su
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.312.2-312.2
    • /
    • 2014
  • 실리콘은 광센서, 태양전지, 발광다이오드 등 광소자 응용 분야에서 널리 사용되고 있는 물질이다. 그러나 실리콘의 높은 굴절율(n~3.5)은 표면에서 약 30% 이상의 Fresnel 반사를 발생시켜 소자의 효율을 감소시키는 원인이 된다. 따라서, 반사손실을 줄이기 위해서는 실리콘 표면에 효율적인 무반사 코팅을 필요로 한다. 기존의 단일 혹은 다중 박막을 이용한 무반사 코팅 기술은 물질간 열팽창계수의 불일치, 접착력 문제, 박막 두께 조절 및 적합한 굴절율을 갖는 물질 선택 어려움 등의 단점을 지니고 있다. 최근, 이러한 무반사 코팅 기술의 대안으로 곤충 눈 구조를 모방한 나노크기의 서브파장 격자구조 (subwavelength gratings, SWGs)에 대한 연구가 활발히 이루어지고 있다. 이러한 SWGs 구조는 공기와 반도체 표면 사이에 점진적, 선형적으로 변화하는 유효굴절율을 갖기 때문에, 광대역 파장영역뿐만 아니라 다양한 각도에서 입사하는 빛에 대해서도 효과적으로 Fresnel 표면 반사를 낮출 수 있다. 본 연구에서는 실리콘 기판 표면 위에 효율적인 무반사 특성을 갖는 계층적 SWGs 나노구조를 제작하기 위해, 레이저간섭리소그라피 및 열적응집금속 입자를 이용한 식각 마스크 패터닝 방법과 유도결합플라즈마 식각 공정을 이용하였다. 제작된 무반사 실리콘 SWGs 나노구조의 표면 및 식각 프로파일은 전자주사현미경으로 관찰하였고, 표면 접촉각 측정 장비를 이용하여 샘플 표면의 젖음성을 확인하였다. 제작된 샘플의 광학적 특성을 조사하기 위해 UV-vis-NIR 스펙트로미터와 엘립소미터 측정 시스템들을 이용하였다.

  • PDF

An implementation of 2D/3D Complex Optical System and its Algorithm for High Speed, Precision Solder Paste Vision Inspection (솔더 페이스트의 고속, 고정밀 검사를 위한 이차원/삼차원 복합 광학계 및 알고리즘 구현)

  • 조상현;최흥문
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.3
    • /
    • pp.139-146
    • /
    • 2004
  • A 2D/3D complex optical system and its vision inspection algerian is proposed and implemented as a single probe system for high speed, precise vision inspection of the solder pastes. One pass un length labeling algorithm is proposed instead of the conventional two pass labeling algorithm for fast extraction of the 2D shape of the solder paste image from the recent line-scan camera as well as the conventional area-scan camera, and the optical probe path generation is also proposed for the efficient 2D/3D inspection. The Moire interferometry-based phase shift algerian and its optical system implementation is introduced, instead of the conventional laser slit-beam method, for the high precision 3D vision inspection. All of the time-critical algorithms are MMX SIMD parallel-coded for further speedup. The proposed system is implemented for simultaneous 2D/3D inspection of 10mm${\times}$10mm FOV with resolutions of 10 ${\mu}{\textrm}{m}$ for both x, y axis and 1 ${\mu}{\textrm}{m}$ for z axis. Experiments conducted on several nBs show that the 2D/3D inspection of an FOV, excluding an image capturing, results in high speed of about 0.011sec/0.01sec, respectively, after image capturing, with $\pm$1${\mu}{\textrm}{m}$ height accuracy.

NEAR REAL-TIME IONOSPHERIC MODELING USING A RBGIONAL GPS NETWORK (지역적 GPS 관측망을 이용한 준실시간 전리층 모델링)

  • Choi, Byung-Kyu;Park, Jong-Uk;Chung, Jeong-Kyun;Park, Phil-Ho
    • Journal of Astronomy and Space Sciences
    • /
    • v.22 no.3
    • /
    • pp.283-292
    • /
    • 2005
  • Ionosphere is deeply coupled to the space environment and introduces the perturbations to radio signal because of its electromagnetic characteristics. Therefore, the status of ionosphere can be estimated by analyzing the GPS signal errors which are penetrating the ionosphere and it can be the key to understand the global circulation and change in the upper atmosphere, and the characteristics of space weather. We used 9 GPS Continuously Operating Reference Stations (CORS), which have been operated by Korea Astronomy and Space Science Institute (KASI) , to determine the high precision of Total Electron Content (TEC) and the pseudorange data which is phase-leveled by a linear combination with carrier phase to reduce the inherent noise. We developed the method to model a regional ionosphere with grid form and its results over South Korea with $0.25^{\circ}\;by\;0.25^{\circ}$ spatial resolution. To improve the precision of ionosphere's TEC value, we applied IDW (Inverse Distance Weight) and Kalman Filtering method. The regional ionospheric model developed by this research was compared with GIMs (Global Ionosphere Maps) preduced by Ionosphere Working Group for 8 days and the results show $3\~4$ TECU difference in RMS values.

A Study of the Back Shape of the Children in Elementary and Middle Schools Using the Phase-shifting Scanning Grating Projection moire (위상천이 주사격자 영사식 모아레 간섭계를 이용한 초.중학생의 배부체형고찰)

  • 유한길;민병일;박동석
    • The Journal of Korean Medicine
    • /
    • v.21 no.4
    • /
    • pp.148-158
    • /
    • 2000
  • Objective : The purpose of this study was to investigate the back shape of school children using the phase-shifting scanning grating projection moire interferometer, which was developed by the Korea Advanced Institute of Science and Technology and is useful in evaluating three dimensional back shape. Methods : In this study the subjects consisted of 1,358 pupils [711 boys(52.36%), 647 girls(47.64%)] attending elementary and middle schools in Seoul. Their ages ranged from nine to fifteen and the average age was 12.2. With the phase-shifting scanning grating projection moire interferometer, the posterior view of the body were taken to see if there are correlations of moire fringe number, width difference between left and right, and correlation between differences in moire fringe number and width on both sides in the scapular, lumbar and gluteal regions. Results : The results were as follows : I. More frequent findings of fringe were observed on the right in all regions : in the scapular region, 309 boys(43.4%) and 156 girls(24.2%) had more fringe numbers on the right side; in the lumbar region, 68 boys(9.5%) and 11 girls(1.7%); and in the gluteal region, 160 boys(22.4%) and 63 girls(9.8%). Such tendency was striking especially in the scapular and lumbar regions, and in boys rather than in girls. In the scapula, 661 subjects(48.7%) with one moire fringe on either side need further attention and 110 subjects(8.I %) with two or more are required to do follow-up radiography for scoliosis. 2. In an analysis of width difference in the trunk, the left side is wider in all regions except for the gluteal region in boys : in the scapular region 21 boys(3.0%) and 103 girls(15.9%); in the lumbar region, 87 boys(12.2%) and 250 girls(38.6%); and in the gluteal region 197 girls(30.4%) had a wider left side and 45 boys(6.3%) showed a wider right side. 3. In correlation analysis of the number of moire fringe and width difference in each region, the side where more moire fringes were observed was significantly wider in the lumbar and gluteal regions, but not in the scapular region.(p<0.01) Conclusions : From these results, it is concluded that the back shape of elementary and middle school students in Seoul shows that the right side had more moire fringes; the left side was wider; and especially in the lumbar and gluteal regions the side where more moire fringes were observed was wider.

  • PDF

Performance and Jitter Effects Analysis of Single Bit Electro-Optical Sigma-Delta Modulators (단일 비트 전자-광학 시그마-델타 변조기의 성능 및 지터 효과 분석)

  • Nam, Chang-Ho;Ra, Sung-Woong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.6
    • /
    • pp.706-715
    • /
    • 2012
  • Electro-optical sigma-delta modulators are the core module of digital receiver to digitize wideband radio-frequency signals directly at an antenna. Electro-optical sigma-delta modulators use a pulsed laser to oversample an input radio-frequency signals at two Mach-Zehnder Interferometer(MZI) and shape the quantization noise using a fiber-lattice accumulator. Decimation filtering is applied to the quantizer output to construct the input signal with high resolution. The jitter affects greatly on reconstructing the original input signal of modulator. This paper analyzes the performance of first order single bit electro-optical sigma-delta modulator in the time domain and the frequency domain. The performance of modulator is analyzed by using asynchronous spectral averaging of the reconstructed signal's spectrum in the frequency domain. The reference value of time jitter is presented by analyzing the performance of jitter effects. This kind of jitter value can be used as a reference value on the design of modulators.

Assembly and Testing of a Visible and Near-infrared Spectrometer with a Shack-Hartmann Wavefront Sensor (샤크-하트만 센서를 이용한 가시광 및 근적외선 분광기 조립 및 평가)

  • Hwang, Sung Lyoung;Lee, Jun Ho;Jeong, Do Hwan;Hong, Jin Suk;Kim, Young Soo;Kim, Yeon Soo;Kim, Hyun Sook
    • Korean Journal of Optics and Photonics
    • /
    • v.28 no.3
    • /
    • pp.108-115
    • /
    • 2017
  • We report the assembly procedure and performance evaluation of a visible and near-infrared spectrometer in the wavelength region of 400-900 nm, which is later to be combined with fore-optics (a telescope) to form a f/2.5 imaging spectrometer with a field of view of ${\pm}7.68^{\circ}$. The detector at the final image plane is a $640{\times}480$ charge-coupled device with a $24{\mu}m$ pixel size. The spectrometer is in an Offner relay configuration consisting of two concentric, spherical mirrors, the secondary of which is replaced by a convex grating mirror. A double-pass test method with an interferometer is often applied in the assembly process of precision optics, but was excluded from our study due to a large residual wavefront error (WFE) in optical design of 210 nm ($0.35{\lambda}$ at 600 nm) root-mean-square (RMS). This results in a single-path test method with a Shack-Hartmann sensor. The final assembly was tested to have a RMS WFE increase of less than 90 nm over the entire field of view, a keystone of 0.08 pixels, a smile of 1.13 pixels and a spectral resolution of 4.32 nm. During the procedure, we confirmed the validity of using a Shack-Hartmann wavefront sensor to monitor alignment in the assembly of an Offner-like spectrometer.