• Title/Summary/Keyword: 게놈

Search Result 408, Processing Time 0.029 seconds

Topography of Post-Genomic Researches in Korea: Governance and Institutional Polymorphism (포스트게놈 시대의 국내 유전체연구 현황: 한국적 거버넌스의 제도적 다형성 연구)

  • Lee, June-Seok
    • Journal of Science and Technology Studies
    • /
    • v.15 no.1
    • /
    • pp.145-180
    • /
    • 2015
  • Human Genome Project was a big science done by United States, U.K., France, China, Germany and Japan. But in Korea HGP was not constructed because of lack of governmental funding and failure to attract relevant actors' attention in spite of small voices from early genome researchers and some family members of patients with incurable diseases. This article does not argue that HGP in Korea was an undone science, a concept claimed by Scott Frickel, et al. Instead, it shows the historical fact that HGP was not constructed in Korea in 1990s and analyzes how genomic researches could become possible in Korea in the post-genomic age using the framework of triple-helix. In Korea, researchers have constructed hybrid networks and organizations that intermingles laboratories of university, industry, and government to conduct genomic researches which requires a lot of financial funding. This structure is different from the entrepreneurial university seen in developed countries such as the United States. Using two examples, this article shows that founding a start-up company by university researchers was not an option as in the United States, but a necessity in order to obtain enough funding to conduct genomic researches in Korea. Otherwise, researchers in Korean universities had to form hybrid networks with government to obtain small amount of funds to conduct researches. I argue that this phenomenon shows multifaceted characteristics of institutional structures regarding genomic researches in Korea.

UNDERSTANDING OF EPIGENETICS AND DNA METHYLATION (인간 게놈의 Copy Number Variation과 유전자 질환)

  • Oh, Jung-Hwan;Nishimura, Ichiro
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.30 no.2
    • /
    • pp.205-212
    • /
    • 2008
  • Genetic variation in the human genome occurs on various levels; from the single nucleotide polymorphism to large, microscopically visible chromosome anomalies. It can be present in many forms, including variable number of tandem repeat (VNTRs; e.g., mini- and microsatellites), presence/absence of transposable elements (e.g., Alu elements), single nucleotide polymorphisms, and structural alterations (e.g., copy number variation, segmental duplication, inversion, translocation). Until recently SNPs were thought to be the main source of genetic and phenotypic human variation. However, the use of methods such as array comparative genomic hybridization (array CGH) and fluorescence in situ hybridization (FISH) have revealed the presence of copy number variations(CNVs) ranging from kilobases (kb) to megabases (Mb) in the human genome. There is great interest in the possibility that CNVs playa role in the etiology of common disease such as HIV-1/AIDS, diabetes, autoimmune disease, heart disease and cancer. The discovery of widespread copy number variation in human provides insights into genetic variability among populations and provides a foundation for studies of the contribution of CNVs to evolution and disease.

Establishing Effective Screening Methodology for Novel Herbicide Substances from Metagenome (신규 제초활성 물질 발굴을 위한 메타게놈 스크리닝 방법 연구)

  • Lee, Boyoung;Choi, Ji Eun;Kim, Young Sook;Song, Jae Kwang;Ko, Young Kwan;Choi, Jung Sup
    • Weed & Turfgrass Science
    • /
    • v.4 no.2
    • /
    • pp.118-123
    • /
    • 2015
  • Metagenomics is a powerful tool to isolate novel biocatalyst and biomolecules directly from the environmental DNA libraries. Since the metagenomics approach bypasses cultivation of microorganisms, un-cultured microorganisms that are majority of exists can be the richest reservoir for natural products discovery. To discover novel herbicidal substances from soil metagenome, we established three easy, simple and effective high throughput screening methods such as cucumber cotyledon leaf disc assay, microalgae assay and seed germination assay. Employing the methods, we isolated two active single clones (9-G1 and 9-G12) expressing herbicidal activity which whitened leaf discs, inhibited growth of microalgae and inhibited root growth of germinated Arabidopsis seeds. Spraying butanol fraction of the isolated active clones' culture broth led to growth retardation or desiccation of Digitalia sanguinalis (L) Scop. in vivo. These results represent that the screening methods established in this study are useful to screen herbicidal substances from metagenome libraries. Further identifying molecular structure of the herbicidal active substances and analyzing gene clusters encoding synthesis systems for the active substances are in progress.

Recent Strategy for Superior Horses (우수 마 선택을 위한 최신 전략)

  • Gim, Jeong-An;Kim, Heui-Soo
    • Journal of Life Science
    • /
    • v.26 no.7
    • /
    • pp.855-867
    • /
    • 2016
  • The horse is relatively earlier domesticated animal species. Domesticated horses have been selected for their ability of racing, robustness, and disease-resistance. As a result, the thoroughbred horse genome has been condensed many genotypes related to exercise ability. In recent years, with the advent of NGS technologies, many studies were concentrated on finding superior genetic species in the horse genome in terms of genomics. Consequently, GWAS (Genome-wide Association study) is applied to horse genome, then genetic marker is revealed for superior racing ability. In addition, RNA-Seq is utilized as a method for analyze of whole transcript profiling in specific samples. By using this approach, specific gene expression patterns and transcript sequences can be revealed in various samples such as each individual, before and after exercise state, and each tissue. DNA methylation, a strong factor that regulate gene expression without the change of DNA sequence, have got a lot of attention. In horse genome, exercise- or individual-specific DNA methylation patterns were detected, and could be useful to develop selective marker of superior horses. MicroRNAs inhibit gene expression, and transposable elements accounted for half of the mammalian genome. These two elements are the crucial factors in functional genomics, and could be applied to the selection of superior horses. As the functional genomics and epigenomics advance, then these technologies introduced in this paper were applied to select superior horses. In this paper, the studies for selection of superior horses through genetic technologies, and development possibilities of these studies were discussed.

Cloning of α-Amylase Gene from Unculturable Bacterium Using Cow Rumen Metagenome (소 반추위 메타게놈에서 비배양 세균의 α-amylase 유전자 클로닝)

  • Cho, Soo-Jeong;Yun-Han-Dae
    • Journal of Life Science
    • /
    • v.15 no.6 s.73
    • /
    • pp.1013-1021
    • /
    • 2005
  • The metagenomes of complex microbial communities are rich sources of novel biocatalysts. The gene encoding an extracellular $\alpha$-amylase from a genomic DNA of cow rumen was cloned in Escherichia coli DH5$\alpha$ and sequenced. The $\alpha$-amylase (amyA) gene was 1,893 bp in length, encoding a protein of 631 amino acid residues with calculated molecular weight of 70,734 Da. The molecular weight of the enzyme was estimated to be about 71,000 Da by active staining of a SDS-PACE. The enzyme was 21 to $59\%$ sequence identical with other amyloyltic enzymes. The AmyA was optimally active at pH 6.0 and $40\%$. The AmyA had a calculated pI of 5.87. AmyA expressed in E. coli DH5$\alpha$ was enhanced in the presence of $Mg^{2+}$ (20 mM) and $Ca^{2+}$ (30 mM) and inhibited in the presence of $Fe^{2+}$ and $Cu^{2+}$. The origin of amyA gene could not be confirmed by PCR using internal primer of amyA gene from extracted genomic DNA of 49 species rumen culturable bacteria so far. An amyh is supposed to obtained from unculturable rumen bacterium in cow rumen environment.

Microbial Metagenome of Airborne Particulate Matter: Methodology, Characteristics, and Influencing Parameters (대기입자상물질의미생물메타게놈: 분석방법, 특성및영향인자)

  • Kang, Sookyung;Cho, Kyung-Suk
    • Microbiology and Biotechnology Letters
    • /
    • v.50 no.2
    • /
    • pp.165-192
    • /
    • 2022
  • The microbial metagenome characteristics of bioaerosols and particulate matter (PM) in the outdoor atmospheric environment and the effects of climate and environmental factors on the metagenome were analyzed. The concentrations of bacteria and fungi in bioaerosols and PM were determined by sampling different regions with different environmental properties. A variety of culture-independent methods were used to analyze the microbial metagenome in aerosols and PM samples. In addition, the effects of meteorological and environmental factors on the diversity and metagenomes of bacteria and fungi were investigated. The survival, growth, and dispersal of the microorganisms in the atmosphere were markedly affected by local weather conditions and the air pollutant concentration. The concentration of airborne microorganisms increased as the temperature increased, but their concentration decreased in summer, due to the effects of high temperatures and strong ultraviolet rays. Humidity and microbial concentration were positively correlated, but when the humidity was too high, the dispersion of airborne microorganisms was inhibited. These comprehensive data on the microbial metagenome in bioaerosols and PM may be used to understand the roles and functions of microorganisms in the atmosphere, and to develop strategies and abatement techniques to address the environmental and public health problems caused by these microorganisms.