Browse > Article
http://dx.doi.org/10.48022/mbl.2112.12005

Microbial Metagenome of Airborne Particulate Matter: Methodology, Characteristics, and Influencing Parameters  

Kang, Sookyung (Department of Environmental Science and Engineering, Ewha Womans University)
Cho, Kyung-Suk (Department of Environmental Science and Engineering, Ewha Womans University)
Publication Information
Microbiology and Biotechnology Letters / v.50, no.2, 2022 , pp. 165-192 More about this Journal
Abstract
The microbial metagenome characteristics of bioaerosols and particulate matter (PM) in the outdoor atmospheric environment and the effects of climate and environmental factors on the metagenome were analyzed. The concentrations of bacteria and fungi in bioaerosols and PM were determined by sampling different regions with different environmental properties. A variety of culture-independent methods were used to analyze the microbial metagenome in aerosols and PM samples. In addition, the effects of meteorological and environmental factors on the diversity and metagenomes of bacteria and fungi were investigated. The survival, growth, and dispersal of the microorganisms in the atmosphere were markedly affected by local weather conditions and the air pollutant concentration. The concentration of airborne microorganisms increased as the temperature increased, but their concentration decreased in summer, due to the effects of high temperatures and strong ultraviolet rays. Humidity and microbial concentration were positively correlated, but when the humidity was too high, the dispersion of airborne microorganisms was inhibited. These comprehensive data on the microbial metagenome in bioaerosols and PM may be used to understand the roles and functions of microorganisms in the atmosphere, and to develop strategies and abatement techniques to address the environmental and public health problems caused by these microorganisms.
Keywords
Airborne microorganism; particulate matter; metagenome; culture-independent methodology;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Yan D, Zhang T, Su J, Zhao LL, Wang H, Fang XM, et al. 2016. Diversity and composition of airborne fungal community associated with particulate matters in Beijing during haze and non-haze days. Front. Microbiol. 7: 487.
2 Mainelis G. 2020. Bioaerosol sampling: Classical approaches, advances, and perspectives. Aerosol Sci. Technol. 54: 496-519.   DOI
3 Yooseph S, Andrews-Pfannkoch C, Tenney A, McQuaid J, Williamson S, Thiagarajan M, et al. 2013. A metagenomic framework for the study of airborne microbial communities. PLoS One 8: e81862.   DOI
4 Sanchez-Parra B, Nunez A, Garcia AM, Campoy P, Moreno DA. 2021. Distribution of airborne pollen, fungi and bacteria at four altitudes using high-throughput DNA sequencing. Atmos. Res. 249: 105306.   DOI
5 Serrano-Silva N, Calderon-Ezquerro MC. 2018. Metagenomic survey of bacterial diversity in the atmosphere of Mexico city using different sampling methods. Environ. Pollut. 235: 20-29.   DOI
6 Seifried JS, Wichels A, Gerdts G. 2015. Spatial distribution of marine airborne bacterial communities. Microbiologyopen 4: 475-490.   DOI
7 Tate KG, Ogawa JM, Yates WE, Sturgeon G. 1980. Performance of a cyclone spore trap. Phytopathology 70: 285-290.   DOI
8 Puspitasari F, Maki T, Shi G, Bin C, Kobayashi F, Hasegawa H, et al. 2016. Phylogenetic analysis of bacterial species compositions in sand dunes and dust aerosol in an Asian dust source area, the Taklimakan desert. Air Qual. Atmos. Heal. 9: 631-644.   DOI
9 Williams RH, Ward E, McCartney HA. 2001. Methods for Integrated air sampling and DNA analysis for detection of airborne fungal spores. Appl. Environ. Microbiol. 67: 2453-2459.   DOI
10 Xie Z, Li Y, Lu R, Li W, Fan C, Liu P, et al. 2018. Characteristics of total airborne microbes at various air quality levels. J. Aerosol Sci. 116: 57-65.   DOI
11 Alghamdi MA, Shamy M, Redal MA, Khoder M, Awad AH, Elserougy S. 2014. Microorganisms associated particulate matter: a preliminary study. Sci. Total Environ. 479-480: 109-116.   DOI
12 Zhong X, Qi J, Li H, Dong L, Gao D. 2016. Seasonal distribution of microbial activity in bioaerosols in the outdoor environment of the Qingdao coastal region. Atmos. Environ. 140: 506-513.   DOI
13 Mouli PC, Mohan SV, Reddy SJ. 2005. Assessment of microbial (bacteria) concentrations of ambient air at semi-arid urban region: influence of meteorological factors. Appl. Ecol. Environ. Res. 3: 139-149.   DOI
14 Raisi L, Lazaridis M, Katsivela E. 2010. Relationship between airborne microbial and particulate matter concentrations in the ambient air at a Mediterranean site. Global NEST J. 12: 84-91.   DOI
15 Wu YH, Chan CC, Chew GL, Shih PW, Lee CT, Chao HJ. 2012. Meteorological factors and ambient bacterial levels in a subtropical urban environment. Int. J. Biometeorol. 56: 1001-1009.   DOI
16 Sun Y, Xu S, Zheng D, Li J, Tian H, Wang Y. 2018. Effects of haze pollution on microbial community changes and correlation with chemical components in atmospheric particulate matter. Sci. Total Environ. 637-638: 507-516.   DOI
17 Gao M, Yan X, Qiu T, Han M, Wang X. 2016. Variation of correlations between factors and culturable airborne bacteria and fungi. Atmos. Environ. 128: 10-19.   DOI
18 Matsuda S, Kawashima S. 2018. Relationship between laser light scattering and physical properties of airborne pollen. J. Aerosol Sci. 124: 122-132.   DOI
19 Wei K, Zou Z, Zheng Y, Li J, Shen F, Wu C, et al. 2016. Ambient bioaerosol particle dynamics observed during haze and sunny days in Beijing. Sci. Total Environ. 550: 751-759.   DOI
20 Kowalski M, Pastuszka JS. 2017. Effect of ambient air temperature and solar radiation on changes in bacterial and fungal aerosols concentration in the urban environment. Ann. Agric. Environ. Med. AAEM. 25: 259-261.   DOI
21 Guo F, Zhang T. 2013. Biases during DNA extraction of activated sludge samples revealed by high throughput sequencing. Appl. Microbiol. Biotechnol. 97: 4607-4616.   DOI
22 Mescioglu E, Paytan A, Mitchell BW, Griffin DW. 2021. Efficiency of bioaerosol samplers: a comparison study. Aerobiologia 37: 447-459.   DOI
23 Hollins PD, Kettlewell PS, Atkinson MD, Stephenson DB, Corden JM, Millington WM, et al. 2004. Relationships between airborne fungal spore concentration of Cladosporium and the summer climate at two sites in Britain. Int. J. Biometeorol. 48: 137-141.   DOI
24 Rivera-Mariani FE, Bolanos-Rosero B. 2012. Allergenicity of airborne basidiospores and ascospores: need for further studies. Aerobiologia 28: 83-97.   DOI
25 Zhen Q, Deng Y, Wang Y, Wang X, Zhang H, Sun X, et al. 2017. Meteorological factors had more impact on airborne bacterial communities than air pollutants. Sci. Total Environ. 601-602: 703-712.   DOI
26 Lu R, Li Y, Li W, Xie Z, Fan C, Liu P, et al. 2018. Bacterial community structure in atmospheric particulate matters of different sizes during the haze days in Xi'an, China. Sci. Total Environ. 637-638: 244-252.   DOI
27 DeLeon-Rodriguez N, Lathem TL, Rodriguez-R LM, Barazesh JM, Anderson BE, Beyersdorf AJ, et al. 2013. Microbiome of the upper troposphere: Species composition and prevalence, effects of tropical storms, and atmospheric implications. Proc. Natl. Acad. Sci. USA 110: 2575-2580.   DOI
28 Gandolfi I, Bertolini V, Ambrosini R, Bestetti G, Franzetti A. 2013. Unravelling the bacterial diversity in the atmosphere. Appl. Microbiol. Biotechnol. 97: 4727-4736.   DOI
29 Fahlgren C, Bratbak G, Sandaa R, Thyrhaug R, Zweifel UL. 2011. Diversity of airborne bacteria in samples collected using different devices for aerosol collection. Aerobiologia 27: 107-120.   DOI
30 Barberan A, Henley J, Fierer N, Casamayor EO. 2014. Structure, inter-annual recurrence, and global-scale connectivity of airborne microbial communities. Sci. Total Environ. 487: 187- 195.   DOI
31 Deguillaume L, Leriche M, Amato P, Ariya PA, Delort AM, Poschl U, et al. 2008. Microbiology and atmospheric processes: chemical interactions of primary biological aerosols. Biogeosciences 5: 1073-1084.   DOI
32 Ariya PA, Amyot M. 2004. New directions: the role of bioaerosols in atmospheric chemistry and physics. Atmos. Environ. 38: 1231-1233.   DOI
33 Christner BC, Morris CE, Foreman CM, Cai R, Sands DC. 2008. Ubiquity of biological ice nucleators in snowfall. Science 319: 1214.   DOI
34 Goudarzi G, Shirmardi M, Khodarahmi F, Hashemi-Shahraki A, Alavi N, Ankali KA, et al. 2014. Particulate matter and bacteria characteristics of the Middle East Dust (MED) storms over Ahvaz, Iran. Aerobiologia 30: 345-356.   DOI
35 Innis MA. 1990. PCR protocols?: a guide to methods and applications, pp. 311-316. 1st Ed. Academic Press, Massachusetts, USA.
36 Jones SE, Newton RJ, McMahon KD. 2008. Potential for atmospheric deposition of bacteria to influence bacterioplankton communities. FEMS Microbiol. Ecol. 64: 388-394.   DOI
37 Peter H, Hortnagl P, Reche I, Sommaruga R. 2014. Bacterial diversity and composition during rain events with and without Saharan dust influence reaching a high mountain lake in the Alps. Environ. Microbiol. Rep. 6: 618-624.   DOI
38 Georgakopoulos DG, Despres V, Frohlich-Nowoisky J, Psenner R, Ariya PA, Posfai M, et al. 2009. Microbiology and atmospheric processes: biological, physical and chemical charac-terization of aerosol particles. Biogeosciences 6: 721-737.   DOI
39 Johnson MD, Cox RD, Barnes MA. 2019. Analyzing airborne environmental DNA: A comparison of extraction methods, primer type, and trap type on the ability to detect airborne eDNA from terrestrial plant communities. Environ. DNA 1: 176-185.   DOI
40 Tang K, Huang Z, Huang J, Maki T, Zhang S, Shimizu A, et al. 2018. Characterization of atmospheric bioaerosols along the transport pathway of Asian dust during the Dust-Bioaerosol 2016 Campaign. Atmos. Chem. Phys. 18: 7131-7148.   DOI
41 Fang Z, Yao W, Lou X, Hao C, Gong C, Ouyang Z. 2016. Profile and characteristics of culturable airborne bacteria in Hangzhou, Southeast of China. Aerosol Air Qual. Res. 16: 1690-1700.   DOI
42 Bowers RM, McLetchie S, Knight R, Fierer N. 2011. Spatial variability in airborne bacterial communities across land-use types and their relationship to the bacterial communities of potential source environments. ISME J. 5: 601-612.   DOI
43 Bowers RM, McCubbin IB, Hallar AG, Fierer N. 2012. Seasonal variability in airborne bacterial communities at a high-elevation site. Atmos. Environ. 50: 41-49.   DOI
44 Woo AC, Brar MS, Chan Y, Lau MC, Leung FC, Scott JA, et al. 2013. Temporal variation in airborne microbial populations and microbially-derived allergens in a tropical urban landscape. Atmos. Environ. 74: 291-300.   DOI
45 Hospodsky D, Yamamoto N, Peccia J. 2010. Accuracy, precision, and method detection limits of quantitative PCR for airborne bacteria and fungi. Appl. Environ. Microbiol. 76: 7004-7012.   DOI
46 Singh J, Birbian N, Sinha S, Goswami A. 2014. A critical review on PCR, its types and applications. Int. J. Adv. Res. Biol. Sci. 1: 65-80.
47 Abellan-Schneyder I, Matchado MS, Reitmeier S, Sommer A, Sewald Z, Baumbach J, et al. 2021. Primer, pipelines, parameters: Issues in 16S rRNA gene sequencing. Msphere 6: e01202-20.
48 Maki T, Hara K, Kobayashi F, Kurosaki Y, Kakikawa M, Matsuki A, et al. 2015. Vertical distribution of airborne bacterial communities in an Asian-dust downwind area, Noto Peninsula. Atmos. Environ. 119: 282-293.   DOI
49 Campa AS, Garcia-Salamanca A, Solano J, Rosa J, Ramos J. 2013. Chemical and microbiological characterization of atmospheric particulate matter during an intense African dust event in southern Spain. Environ. Sci. Technol. 47: 3630-3638.   DOI
50 Matthias-Maser S, Obolkin V, Khodzer T, Jaenicke R. 2000. Seasonal variation of primary biological aerosol particles in the remote continental region of Lake Baikal/Siberia. Atmos. Environ. 34: 3805-3811.   DOI
51 Maki T, Susuki S, Kobayashi F, Kakikawa M, Yamada M, Higashi T, et al. 2008. Phylogenetic diversity and vertical distribution of a halobacterial community in the atmosphere of an Asian dust (KOSA) source region, Dunhuang City. Air Qual. Atmos. Health 1: 81-89.   DOI
52 Maron PA, Lejon DP, Carvalho E, Bizet K, Lemanceau P, Ranjard L, et al. 2005. Assessing genetic structure and diversity of airborne bacterial communities by DNA fingerprinting and 16S rDNA clone library. Atmos. Environ. 39: 3687-3695.   DOI
53 Maki T, Kakikawa M, Kobayashi F, Yamada M, Matsuki A, Hasegawa H, et al. 2013. Assessment of composition and origin of airborne bacteria in the free troposphere over Japan. Atmos. Environ. 74: 73-82.   DOI
54 Bertolini V, Gandolfi I, Ambrosini R, Bestetti G, Innocente E, Rampazzo G, et al. 2013. Temporal variability and effect of environmental variables on airborne bacterial communities in an urban area of Northern Italy. Appl. Microbiol. Biotechnol. 97: 6561-6570.   DOI
55 Rolph CA, Gwyther CL, Tyrrel SF, Nasir ZA, Drew GH, Jackson SK, et al. 2018. Sources of airborne endotoxins in ambient air and exposure of nearby communities-a review. Atmosphere 9: 375.   DOI
56 Nossa CW. 2010. Design of 16S rRNA gene primers for 454 pyrosequencing of the human foregut microbiome. World J. Gastroenterol. 16: 4135.   DOI
57 Madsen AM, Zervas A, Tendal K, Nielsen JL. 2015. Microbial diversity in bioaerosol samples causing ODTS compared to reference bioaerosol samples as measured using Illumina sequencing and MALDI-TOF. Environ. Res. 140: 255-267.   DOI
58 Gandolfi I, Bertolini V, Bestetti G, Ambrosini R, Innocente E, Rampazzo G, et al. 2015. Spatio-temporal variability of airborne bacterial communities and their correlation with particulate matter chemical composition across two urban areas. Appl. Microbiol. Biotechnol. 99: 4867-4877.   DOI
59 Aziza AA, Lee K, Park B, Park H, Park K, Choi IG, et al. 2018. Comparative study of the airborne microbial communities and their functional composition in fine particulate matter (PM2.5) under non-extreme and extreme PM2.5 conditions. Atmos. Environ. 194: 82-92.   DOI
60 Haas D, Defago G. 2005. Biological control of soil-borne pathogens by fluorescent Pseudomonads. Nat. Rev. Microbiol. 3: 307-319.   DOI
61 Awad AHA, Elmorsy TH, Tarwater PM, Green CF, Gibbs SG. 2010. Air biocontamination in a variety of agricultural industry environments in Egypt: a pilot study. Aerobiologia 26: 223-232.   DOI
62 Maier RM, Gentry TJ. 2014. Chapter 17: Microorganisms and organic pollutants. pp. 415-439. In Pepper I, Gerba C, Gentry T (eds.), Environmental Microbiology, 3rd Ed. Academic Press, San Diego, USA.
63 Lighthart B. 2000. Mini-review of the concentration variations found in the alfresco atmospheric bacterial populations. Aerobiologia 16: 7-16.   DOI
64 Fierer N, Liu Z, Rodriguez-Hernandez M, Knight R, Henn M, Hernandez MT. 2008. Short-term temporal variability in airborne bacterial and fungal populations. Appl. Environ. Microbiol. 74: 200-207.   DOI
65 Pratt KA, Demott PJ, French JR, Wang Z, Westphal DL, Heymsfield AJ, et al. 2009. In situ detection of biological particles in cloud ice-crystals. Nat. Geosci. 2: 398-401.   DOI
66 Bottos EM, Woo AC, Zawar-Reza P, Pointing SB, Cary SC. 2014. Airborne bacterial populations above desert soils of the McMurdo dry valleys. Antarctica. Micro. Ecol. 67: 120-128.   DOI
67 Murata K, Zhang D. 2016. Concentration of bacterial aerosols in response to synoptic weather and land-sea breeze at a seaside site downwind of the Asian continent. J. Geophys. Res. Atmos. 121: 11636-11647.
68 Tan J, Duan J, Zhen N, He K, Hao J. 2016. Chemical characteristics and source of size ractionated atmospheric particle in haze episode in Beijing. Atmos. Res. 167: 24-33.   DOI
69 Bell ML, Dominici F, Ebisu K, Zeger SL, Samet JM. 2007. Spatial and temporal variation in PM2.5 chemical composition in the United States for health effects studies. Environ. Health Perspect. 115: 989-995.   DOI
70 Li W, Yang J, Zhang D, Li B, Wang E, Yuan H. 2018. Concentration and community of airborne bacteria in response to cyclical haze events during the fall and winter in Beijing, China. Front. Microbiol. 9: 1741.   DOI
71 Genitsaris S, Stefanidou N, Katsiapi M, Kormas KA, Sommer U, Moustaka-Gouni M. 2017. Variability of airborne bacteria in an urban Mediterranean area (Thessaloniki, Greece). Atmos. Environ. 157: 101-110.   DOI
72 Fan XY, Gao JF, Pan KL, Li DC, Dai HH, Li X. 2019. More obvious air pollution impacts on variations in bacteria than fungi and their co-occurrences with ammonia-oxidizing microorganisms in PM2.5. Environ. Pollut. 251: 668-680.   DOI
73 Park EH, Heo J, Kim H, Yi SM. 2020. The major chemical constituents of PM2.5 and airborne bacterial community phyla in Beijing, Seoul, and Nagasaki. Chemosphere 254: 126870.   DOI
74 Kathiriya T, Gupta A, Singh NK. 2021. An opinion review on sampling strategies, enumeration techniques, and critical environmental factors for bioaerosols: An emerging sustainability indicator for society and cities. Environ. Technol. Innov. 21: 101287.   DOI
75 Kim KH, Kabir E, Kabir S. 2015. A review on the human health impact of airborne particulate matter. Environ. Int. 74: 136-143.   DOI
76 Federici E, Petroselli C, Montalbani E, Casagrande C, Ceci E, Moroni B, et al. 2018. Airborne bacteria and persistent organic pollutants associated with an intense Saharan dust event in the Central Mediterranean. Sci. Total Environ. 645: 401-410.   DOI
77 Gao M, Qiu T, Jia R, Han M, Song Y, Wang X. 2015. Concentration and size distribution of viable bioaerosols during nonhaze and haze days in Beijing. Environ. Sci. Pollut. Res. Int. 22: 4359-4368.   DOI
78 Xu C, Wei M, Chen J, Wang X, Zhu C, Li J, et al. 2017. Bacterial characterization in ambient submicron particles during severe haze episodes at Ji'nan, China. Sci. Total Environ. 580: 188-196.   DOI
79 Hu J, He XH, Li DP, Liu Q. 2007. Progress in research of Spingomonas. Chin. J. Appl. Environ. Biol. 13: 431-437.   DOI
80 Li J, Chen H, Li X, Wang M, Zhang X, Cao J, et al. 2019. Differing toxicity of ambient particulate matter (PM) in global cities. Atmos. Environ. 212: 305-315   DOI
81 Garaga R, Avinash CKR, Kota SH. 2019. Seasonal variation of airborne allergenic fungal spores in ambient PM 10 - a study in Guwahati, the largest city of north-east India. Air Qual. Atmos. Health. 12: 11-20.   DOI
82 Spasojevic MJ, Grace JB, Harrison S, Damschen EI. 2014. Functional diversity supports the physiological tolerance hypothesis for plant species richness along climatic gradients. J. Ecol. 102: 447-455.   DOI
83 Naruka K, Heda S. 2018. A preliminary study on fungal air spora at railway station with special reference to summer season. Int. Res. J. Environ. Sci. 7: 52-55.
84 Tang JW. 2009. The effect of environmental parameters on the survival of airborne infectious agents. J. R. Soc. Interface 6: S737-S746.
85 Almaguer M, Aira MJ, Rodriguez-Rajo FJ, Rojas TI. 2014. Temporal dynamics of airborne fungi in Havana (Cuba) during dry and rainy seasons: influence of meteorological parameters. Int. J. Biometeorol. 58: 1459-1470.   DOI
86 Quintero E, Rivera-Mariani F, Bolanos-Rosero B. 2009. Analysis of environmental factors and their effects on fungal spores in the atmosphere of a tropical urban area (San Juan, Puerto Rico). Aerobiologia 26: 113-124.   DOI
87 Corden JM, Millington WM. 2001. The long-term trends and seasonal variation of the aeroallergen alternaria in derby. Aerobiologia 17: 127-136.   DOI
88 Erkara IP, Asan A, Yilmaz V, Pehlivan S, Okten SS. 2008. Airborne Alternaria and Cladosporium species and relationship with meteorological conditions in Eskisehir City, Turkey. Environ. Monit. Assess. 144: 31-41.   DOI
89 Xu C, Wei M, Chen J, Zhu C, Li J, Lv G, et al. 2017. Fungi diversity in PM2.5 and PM1 at the summit of Mt. Tai: abundance, size distribution, and seasonal variation. Atmos. Chem. Phys. 17: 1147-11260.
90 Knudsen SM, Gunnarsen L, Madsen AM. 2017. Airborne fungal species associated with mouldy and non-mouldy buildings - effects of air change rates, humidity, and air velocity. Build. Sci. 122: 161-170.
91 Li DW, Kendrick B. 1995. A year-round study on functional relationships of airborne fungi with meteorological factors. Int. J. Biometeorol. 39: 74-80.   DOI
92 Savage D, Barbetti MJ, MacLeod WJ, Salam MU, Renton M. 2012. Mobile traps are better than stationary traps for surveillance of airborne fungal spores. Crop Prot. 36: 23-30.   DOI
93 Ji L, Zhang Q, Fu X, Zheng L, Dong J, Wang J, Guo S. 2019. Feedback of airborne bacterial consortia to haze pollution with different PM2.5 levels in typical mountainous terrain of Jinan, China. Sci. Total Environ. 695: 133912.   DOI
94 Crandall SG, Gilbert GS. 2017. Meteorological factors associated with abundance of airborne fungal spores over natural vegetation. Atmos. Environ. 162: 87-99.   DOI
95 Stillore AD, Trueblood JV, Grassian VH. 2016. Atmospheric chemistry of bioaerosols: heterogeneous and multiphase reactions with atmospheric oxidants and other trace gases. Chem. Sci. 7: 6604-6616.   DOI
96 Sabariego S, Diaz DLGC, Alba F. 2000. The effect of meteorological factors on the daily variation of airborne fungal spores in Granada (southern Spain). Int. J. Biometeorol. 44: 1-5.   DOI
97 Stennett PJ, Beggs PJ. 2004. Alternaria spores in the atmosphere of Sydney, Australia, and relationships with meteorological factors. Int. J. Biometeorol. 49: 98-105.   DOI
98 Murray BJ, Ross JF, Whale TF, Price HC, Atkinson JD, Umo NS, et al. 2015. The relevance of nanoscale biological fragments for ice nucleation in clouds. Sci. Rep. 5: 8082.   DOI
99 Harrison RM, Jones AM, Biggins PD, Pomeroy N, Cox CS, Kidd SP, et al. 2005. Climate factors influencing bacterial count in background air samples. Int. J. Biometeorol. 49: 167-178.   DOI
100 Ma J, Sun J, Zhang T, Zeng J, Lin Q, Deng L, et al. 2011. Effect of partial solar eclipse on airborne culturable bacterial community in Urumqi. Acta Ecol. Sin. 31: 4671-4679.
101 Huffman JA, Prenni AJ, DeMott PJ, Pohlker C, Mason RH, Robinson NH, et al. 2013. High concentrations of biological aerosol particles and ice nuclei during and after rain. Atmos. Chem. Phys. 13: 6151-6164.   DOI
102 RodrIGuez-Rajo FJ, Iglesias I, Jato V. 2005. Variation assessment of airborne alternaria and Cladosporium spores at different bioclimatical conditions. Mycol. Res. 109: 497-507.   DOI
103 Bragoszewska E, Pastuszka JS. 2018. Influence of meteorological factors on the level and characteristics of culturable bacteria in the air in Gliwice, Upper Silesia (Poland). Aerobiologia 34: 241-255.   DOI
104 Gangamma S. 2014. Characteristics of airborne bacteria in Mumbai urban environment. Sci. Total Environ. 488-489: 70-74.   DOI
105 Sousa SIV, Martins FG, Pereira MC, Alvim-Ferraz MCM, Ribeiro H, Oliveira M, et al. 2008. Influence of atmospheric ozone, PM10 and meteorological factors on the concentration of airborne pollen and fungal spores. Atmos. Environ. 42: 7452-7464.   DOI
106 Fang Z, Ouyang Z, Zheng H, Wang X, Hu L. 2007. Culturable airborne bacteria in outdoor environments in Beijing, China. Microb. Ecol. 54: 487-496.   DOI
107 Rathnayake CM, Metwali N, Jayarathne T, Kettler J, Huang Y, Thorne PS, et al. 2017. Influence of rain on the abundance of bioaerosols in fine and coarse particles. Atmos. Chem. Phys. 17: 2459-2475.   DOI
108 Kumar P, Mahor P, Goel AK, Kamboj DV, Kumar O. 2011. Aero-microbiological study on distribution pattern of bacteria and fungi during weekdays at two different locations in urban atmosphere of Gwalior, Central India. Sci. Res. Essays 6: 5435-5441.
109 Kumar A, Attri AK. 2016. Characterization of fungal spores in ambient particulate matter: a study from the Himalayan region. Atmos. Environ. 142: 182-193.   DOI
110 Chakrabarti HS, Das S, Gupta-Bhattacharya S. 2012. Outdoor airborne fungal spora load in a suburb of kolkata, India: its variation, meteorological determinants and health impact. Int. J. Environ. Health Res. 22: 37-50.   DOI
111 Zheng WC, Zhao Y, Xin HW, Li BM, Gates R. 2013. Concentrations and size distributions of airborne particulate matter and bacteria in an experimental aviary laying-hen chamber. Trans. ASABE 56: 1493-1501.
112 Wang BB, Li YP, Xie ZS, Du SL, Zeng XL, Hou JL, et al. 2020. Characteristics of microbial activity in atmospheric aerosols and its relationship to chemical composition of PM2.5 in Xi'an, China. J. Aerosol Sci. 146: 105572.   DOI
113 Elbert W, Taylor PE, Andreae MO, Poschl U. 2006. Contribution of fungi to primary biogenic aerosols in the atmosphere: wet and dry discharged spores, carbohydrates, and inorganic ions by Asco- and Basidiomycota. Atmos. Chem. Phys. Discuss. 6: 11317-11355.   DOI
114 Allitt U. 2000. Airborne fungal spores and the thunderstorm of 24 June 1994. Aerobiologia 16: 397.   DOI
115 Vokou D, Vareli K, Zarali E, Karamanoli K, Constantinidou HIA, Monokrousos N, et al. 2012. Exploring biodiversity in the bacterial community of the mediterranean phyllosphere and its relationship with airborne bacteria. Microb. Ecol. 64: 714-724.   DOI
116 Li M, Qi J, Zhang H, Huang S, Li L, Gao D. 2011. Concentration and size distribution of bioaerosols in an outdoor environment in the Qingdao coastal region. Sci. Total Environ. 409: 3812-3819.   DOI
117 Fan C, Li Y, Liu P, Mu F, Xie Z, Lu R, et al. 2019. Characteristic of airborne opportunistic pathogenic bacteria during autumn and winter in Xi'an, China. Sci. Total Environ. 672: 834-845.   DOI
118 Qin N, Liang P, Wu CY, Wang GQ, Xu Q, Xiong X, et al. 2020. Longitudinal survey of microbiome associated with particulate matter in a megacity. Genome Biol. 21: 55.   DOI
119 Yan R, Yu S, Zhang Q, Li P, Wang S, Chen B, et al. 2015. A heavy haze episode in Beijing in February of 2014: Characteristics, origins and implications. Atmos. Pollut. Res. 6: 867-876.   DOI
120 Li Y, Fu H, Wang W, Liu J, Meng Q, Wang W. 2015. Characteristics of bacterial and fungal aerosols during the autumn haze days in Xi'an, China. Atmos. Environ. 122: 439-447.   DOI
121 Liu T, Chen LWA, Zhang M, Watson JG, Chow JC, Cao J, et al. 2019. Bioaerosol concentrations and size distributions during the autumn and winter seasons in an industrial city of central China. Aerosol Air Qual. Res. 19: 1095-1104.   DOI
122 Schumacher CJ, Pohlker C, Aalto P, Hiltunen V, Petaja T, Kulmala M, et al. 2013. Seasonal cycles of fluorescent biological aerosol particles in boreal and semi-arid forests of finland and colorado. Atmos. Chem. Phys. 13: 11987-12001.   DOI
123 Dong L, Qi J, Shao C, Zhong X, Gao D, Cao W, et al. 2016. Concentration and size distribution of total airborne microbes in hazy and foggy weather. Sci. Total Environ. 541: 1011-1018.   DOI
124 Liu H, Zhang X, Zhang H, Yao X, Zhou M, Wang J, et al. 2018. Effect of air pollution on the total bacteria and pathogenic bacteria in different sizes of particulate matter. Environ. Pollut. 233: 483-493.   DOI
125 Luhung I, Wu Y, Ng CK, Miller D, Cao B, Chang VW-C. 2015. Protocol improvements for low concentration DNA-based bioaerosol sampling and analysis. PLoS One 10: e0141158.   DOI
126 Li H, Shan Y, Huang Y, An Z, Xu G, Wei F, Zhang C, Wu W. 2019. Bacterial community specification in PM2. 5 in different seasons in Xinxiang, central China. Aerosol Air Qual. Res. 19: 1355-1364.   DOI
127 Frohlich-Nowoisky J, Pickersgill DA, Despres VR, Poschla U. 2009. High diversity of fungi in air particulate matter. PNAS 106: 12814-12819.   DOI
128 Frohlichnowoisky J, Ruzene Nespoli C, Pickersgill DA, Galand PE, Mullergermann I, Nunes T. 2014. Diversity and seasonal dynamics of airborne archaea. Biogeosciences 11: 6067-6079.   DOI
129 Tong Y. 1999. Diurnal distribution of total and culturable atmospheric bacteria at a rural site. Aerosol Sci. Technol. 30: 246-254.   DOI
130 Cao C, Jiang WJ, Wang BY, Fang JH, Lang JD, Tian G, Jiang JK, Zhu TF. 2014. Inhalable microorganisms in Beijing's PM2.5 and PM10 pollutants during a severe smog event. Environ. Sci. Technol. 48: 1499-1507.   DOI
131 Leontidou K, Vernesi C, De Groeve J, Cristofolini F, Vokou D, Cristofori A. 2018. DNA metabarcoding of airborne pollen: new protocols for improved taxonomic identification of environmental samples. Aerobiologia 34: 63-74.   DOI
132 Gao JF, Fan XY, Li HY, Pan KL. 2017. Airborne bacterial communities of PM2.5 in Beijing-Tianjin-Hebei megalopolis, China as revealed by Illumina MiSeq sequencing: A case study. Aerosol Air Qual. Res. 17: 788-798.   DOI
133 Bai W, Li Y, Xie W, Ma T, Hou J, Zeng X. 2021. Vertical variations in the concentration and community structure of airborne microbes in PM2.5. Sci. Total Environ. 760: 143396.   DOI
134 Lee SH, Lee HJ, Kim SJ, Lee HM, Kang H, Kim YP. 2010. Identification of airborne bacterial and fungal community structures in an urban area by T-RFLP analysis and quantitative real-time PCR. Sci. Total Environ. 408: 1349-1357.   DOI
135 Tanaka D, Terada Y, Nakashima T, Sakatoku A, Nakamura S. 2015. Seasonal variations in airborne bacterial community structures at a suburban site of central Japan over a 1-year time period using PCR-DGGE method. Aerobiologia 31: 143-157.   DOI
136 Hai VD, Hoang SMT, Hung NTQ, Ky NM, Gwi-Nam B, Ki-hong P, et al. 2019. Characteristics of airborne bacteria and fungi in the atmosphere in Ho Chi Minh city, Vietnam-a case study over three years. Int. Biodeterior. Biodegrad. 145: 104819.   DOI
137 Umesh BK. 2014. Study of biodiversity of fungal bioaerosols in mumbai Metropolis. Int. J. Res. Biosci. Agric. Technol. 2: 193-2015.
138 Wei M, Liu H, Chen J, Xu C, Li J, Xu P, Sun Z. 2020. Effects of aerosol pollution on PM2.5-associated bacteria in typical inland and coastal cities of northern China during the winter heating season. Environ. Pollut. 262: 114188.   DOI
139 Mbareche H, Veillette M, Bilodeau GJ, Duchaine C. 2018. Bioaerosol sampler choice should consider efficiency and ability of samplers to cover microbial diversity. Appl. Environ. Microbiol. 84: 1589-1607.
140 Li Y, Lu R, Li W, Xie Z, Song Y. 2017. Concentrations and size distributions of viable bioaerosols under various weather conditions in a typical semi-arid city of Northwest China. J. Aerosol Sci. 106: 83-92.   DOI
141 Grinn-Gofron A, Nowosad J, Bosiacka B, Camacho I, Pashley C, Belmonte J, et al. 2019. Airborne alternaria and cladosporium fungal spores in europe: Forecasting possibilities and relationships with meteorological parameters. Sci. Total Environ. 653: 938-946.   DOI
142 Pan Y, Luo L, Xiao H, Zhu R, Xiao H. 2020. Spatial variability of inhalable fungal communities in airborne PM2.5 across Nanchang, China. Sci. Total Environ. 746: 141171.   DOI
143 Haig CW, Mackay WG, Walker JT, Williams C. 2016. Bioaerosol sampling: sampling mechanisms, bio-efficiency and field studies. J. Hosp. Infect. 93: 242-255.   DOI
144 Nunez A, Amo de Paz G, Rastrojo A, Garcia AM, Alcami A, Gutierrez-Bustillo AM, et al. 2016. Monitoring of airborne biological particles in outdoor atmosphere. Part 1: Importance, variability and ratios. Int. Microbiol. 19: 1-13.
145 Du P, Du R, Ren W, Lu Z, Fu P. 2018b. Seasonal variation characteristic of inhalable microbial communities in PM2.5 in Beijing city, China. Sci. Total Environ. 610-611: 308-315.   DOI
146 Du P, Du R, Ren W, Lu Z, Zhang Y, Fu P. 2018a. Variations of bacteria and fungi in PM2.5 in Beijing, China. Atmos. Environ. 172: 55-64.   DOI
147 Radosevich JL, Wilson WJ, Shinn JH, DeSantis TZ, Andersen GL. 2002. Development of a high-volume aerosol collection system for the identification of air-borne micro-organisms. Appl. Microbiol. 34: 162-167.   DOI
148 Zhong S, Zhang L, Jiang X, Gao P. 2019. Comparison of chemical composition and airborne bacterial community structure in PM2.5 during haze and non-haze days in the winter in Guilin, China. Sci. Total Environ. 655: 202-210.   DOI
149 Smets W, Moretti S, Denys S, Lebeer S. 2016. Airborne bacteria in the atmosphere: Presence, purpose, and potential. Atmos. Environ. 139: 214-221.   DOI
150 Lindsley WG, Green BJ, Bleacher FM, Martin SB, Law BF, Jensen PA, Schafer MP. 2017. Sampling and characterization of bioaerosols, pp. BA1-115. In Ashley K, O'Connor PF (eds.), NIOSH Manual of Analytical Methods, 5th Ed. National Institute for Occupational Safety and Health (NIOSH), USA.
151 Yao M, Mainelis G. 2006. Investigation of cut-off sizes and collection efficiencies of portable microbial samplers. Aerosol Sci. Technol. 40: 595-606.   DOI
152 Aguayo J, Fourrier-Jeandel C, Husson C, Loos R. 2018. Assessment of passive traps combined with high-throughput. Appl. Environ. Microbiol. 84: e02637-17.
153 Brodie EL, DeSantis TZ, Parker JPM, Zubietta IX, Piceno YM, Andersen GL. 2007. Urban aerosols harbor diverse and dynamic bacterial populations. Proc. Natl. Acad. Sci. USA 104: 299-304.   DOI
154 Wei M, Xu C, Xu X, Zhu C, Li J, Lv G. 2019. Characteristics of atmospheric bacterial and fungal communities in PM2.5 following biomass burning disturbance in a rural area of North China Plain. Sci. Total Environ. 651: 2727-2739.   DOI
155 Gordon J, Gandhi P, Shekhawat G, Frazier A, Hampton-Marcell J, Gilbert JA. 2015. A simple novel device for air sampling by electrokinetic capture. Microbiome 3: 79.   DOI
156 Jones AM, Harrison RM. 2004. The effects of meteorological factors on atmospheric bioaerosol concentrations - a review. Sci. Total Environ. 326: 151-180.   DOI
157 Chen H, Du R, Zhang Y, Zhang S, Ren W, Du P. 2021. Survey of background microbial index in inhalable particles in Beijing. Sci. Total Environ. 757: 143743.   DOI
158 Klappenbach JA, Saxman PR, Cole JR, Schmidt TM. 2001. rrndb: the ribosomal RNA operon copy number database. Nucleic Acids Res. 29: 181-184.   DOI
159 Van Doorn R, Szemes M, Bonants P, Kowalchuk GA, Salles JF, Ortenberg E, et al. 2007. Quantitative multiplex detection of plant pathogens using a novel ligation probe-based system coupled with universal, high-throughput real-time PCR on OpenArraysTM. BMC Genomics 8: 276.   DOI
160 Raisi L, Aleksandropoulou V, Lazaridis M, Katsivela E. 2013. Size distribution of viable, cultivable, airborne microbes and their relationship to particulate matter concentrations and meteorological conditions in a Mediterranean site. Aerobiologia 29: 233-248.   DOI
161 Stetzenbach LD, Buttner MP, Cruz P. 2004. Detection and enumeration of airborne biocontaminants. Curr. Opin. Biotechnol. 15: 170-174.   DOI
162 Yoo K, Lee TK, Choi EJ, Yang J, Shukla SK, Hwang S, et al. 2017. Molecular approaches for the detection and monitoring of microbial communities in bioaerosols: A review. J. Environ. Sci. 51: 234-247.   DOI
163 Zhai Y, Li X, Wang T, Wang B, Li C, Zeng G. 2018. A review on airborne microorganisms in particulate matters: Composition, characteristics and influence factors. Environ. Int. 113: 74-90.   DOI
164 Frohlichnowoisky J. 2016. Bioaerosols in the earth system: climate, health, and ecosystem interactions. Atmos. Res. 182: 346-376.   DOI
165 Henderson TJ, Salem H. 2016. CHAPTER 1: The atmosphere: Its developmental history and contributions to microbial evolution and habitat, pp. 1-41. In Salem H, Katz SA (eds.), Aerobiology: The toxicology of airborne pathogens and toxins, 1st Ed. Royal Society of Chemistry, London.
166 Jaenicke R. 2005. Abundance of cellular material and proteins in the atmosphere. Science 308: 73.   DOI
167 Qi Y, Li Y, Xie W, Lu R, Mu F, Bai W, Du S. 2020. Temporal-spatial variations of fungal composition in PM2.5 and source tracking of airborne fungi in mountainous and urban regions. Sci. Total Environ. 708: 135027.   DOI
168 Lee JY, Park EH, Lee S, Ko G, Honda Y, Hashizume M, et al. 2017. Airborne bacterial communities in three East Asian Cities of China, South Korea, and Japan. Sci. Rep. 7: 5545.   DOI
169 Kraaijeveld K, De Weger LA, Garcia MV, Buermans H, Frank J, Hiemstra PS, et al. 2015. Efficient and sensitive identification and quantification of airborne pollen using next-generation DNA sequencing. Mol. Ecol. Resour. 15: 8-16.   DOI