The current left-turn split model adopted in COSMOS has an inherent limitation when a loop detector in the left-turn lanes was disconnected for a period of time. In this instance, the current model always allocated minimum green time to the left-turn phase, thus optimal split and efficient signal operation for the intersection was not guaranteed. In this paper, four mathmatical models using detector information of the intersection and four empirical models using historical profiles were developed and investigated for different traffic conditions to improve the operational efficiency of the intersection. From the model evaluation test, the empirical model using a four-week historical profile produced the least error among the eight models investigated. NETSIM simulation test results also showed that the proposed model could give significantly reduced delay time as compared to the current model. From these results, the operational efficency of the signalized intersections under the real-time control can be greatly improved by using the model proposed in case of the left-turn detector failure.
TOA(Time of Arrival) 및 TDOA(Time Difference of Arrival)경우 무선국의 시간동기화를 위해서 고도의 기술을 요구하고 있으며, 시간동기오차에 따른 위치검지의 정밀도가 낮아지는 문제가 있어 이를 극복하기 위하여 위상차를 이용한 새로운 열차검지기법의 제안에 따른 구현을 위하여 무선장치 설계에 대하여 기술하고자 한다. 본 시스템은 전파의 전달 속도($\lambda$)를 응용하여 기준 주파수인 1.5MHz를 송신 시스템과 수신 시스템의 기준 주파수와 비교하여 그 위상의 차이를 비교하여 지연된 시간을 구한 후 이를 거리로 환산하는 시스템으로서 무선장치와 S/W로 구분하여 구현 설계하였다.
This study aims to develop travel time estimation and prediction models on the freeway using measurements from vehicle detectors. In this study, we established a travel time estimation model using traffic volume which is a principle factor of traffic flow changes by reviewing existing travel time estimation techniques. As a result of goodness of fit test. in the normal traffic condition over 70km/h, RMSEP(Root Mean Square Error Proportion) from travel speed is lower than the proposed model, but the proposed model produce more reliable travel times than the other one in the congestion. Therefore in cases of congestion the model uses the method of calculating the delay time from excess link volumes from the in- and outflow and the vehicle speeds from detectors in the traffic situation at a speed of over 70km/h. We also conducted short term prediction of Kalman Filtering to forecast traffic condition and more accurate travel times using statistical model The results of evaluation showed that the lag time occurred between predicted travel time and estimated travel time but the RMSEP values of predicted travel time to observations are as 1ow as that of estimation.
In this paper, we suggested a vehicle classification algorithm using pattern recognition method. At present, Inductive Loop Detector is rarely used for vehicle classification because of its low accuracy. To improve the accuracy, we suggest a new algorithm for Loop Detector using neural networks. In the developed algorithm, the inputs to the neural networks are the variation rate of frequency and occupancy-time. The output is classified vehicles. The developed algorithm was assessed at test sites and the recognition rate was 91.3percent. The results verified that the proposed algorithm improves the vehicle classification accuracy compared to the conventional method based on Loop Detector.
본 연구는 신호교차로에서의 딜레마 죤 범위를 산정하고 신호위반 단속의 허용 범위를 분석하는데 있다. 각 교차로 접근로별 조사 자료를 토대로 딜레마 죤의 범위를 산정하였고, 이를 토대로 신호위반 단속에 있어 딜레마 죤의 영향을 최소화 할 수 있는 방안을 제시하고자 하였다. 기존의 딜레마 죤에 관한 연구에서는 인지-반응 시간과 황색신호시간을 초기값으로 적용하였으나 본 연구에서는 해당 교차로의 조사치를 적용하였다. 조사 방법으로 속도조사는 스피드 건을 이용하여 각각의 대상 교차로별 접근로에서 접근 속도 및 통과 속도를 조사하였으며, 운전자의 인지-반응 시간 및 황색신호시간에 교차로를 통과하는 차량조사는 비디오 촬영을 통하여 조사하였다. 이러한 조사된 자료를 토대로 신호위반 단속기준에 맞추어 딜레마 죤에 관하여 분석하였다. 본 연구에서 딜레마 죤은 최소정지거리($d_0$)가 최대통과거리($d_c$)보다 클 때 존재하는 것으로 보았으며, 그 차이만큼의 딜레마 죤이 발생하는 것으로 정의하였다. 이에 신호위반 단속을 함에 있어딜레마 죤의 영향을 최소화 할 수 있는 방안 등을 제시하였다. 그러나 각각의 방안을 개별적으로 적용시킬 경우 문제점이 발생하였다. 이러한 문제점을 해결하기 위해서 자기감응식 루프검지기의 위치를 재조정함에 있어 하나의 루프 검지기를 정지선 이후에 존재함과 동시에 황색신호시간을 재조정하거나, 자기감응식 루프검지기의 작동시간을 재조정하는 방안을 제시하고자 하였다. 본 연구에서는 3개의 교차로를 비교대상으로 선정하여 각각의 교통환경에 따른 접근로별 딜레마죤의 범위를 최소화하기 위한 대안을 제시하였다.
The Journal of The Korea Institute of Intelligent Transport Systems
/
v.17
no.6
/
pp.111-120
/
2018
This study focuses on utilizing drones for performance evaluation of ITS detectors and analyzing economic feasibility when performance evaluation is conducted by the traffic management center's own personnel using drones. The study sites were selected from DSRC, video detector, and radar detector locations and drone filming was conducted to obtain travel speed, queue length, and delay time and compare with the detector data. It was shown that drones can be very effectively used to evaluate performance of major ITS detectors such as DSRC and video detectors. In addition, it was analyzed that a drone operated by the traffic management center's own personnel provides very economic solution for ITS detector performance evaluation when compared to consignment by external agencies.
KSCE Journal of Civil and Environmental Engineering Research
/
v.28
no.3D
/
pp.307-315
/
2008
The aim of this study is to develop travel time estimation model by using Self-Organized Neural network(in brief, SON) algorithm. Travel time data based on vehicles equipped with GPS and number-plate matching collected from National road number 3 (between Jangji-IC and Gonjiam-IC), which is pilot section of National Highway Traffic Management System were employed. We found that the accuracies of travel time are related to location of detector, the length of road section and land-use properties. In this paper, we try to develop travel time estimation using SON to remedy defects of existing neural network method, which could not additional learning and efficient structure modification. Furthermore, we knew that the estimation accuracy of travel time is superior to optimum located detectors than based on existing located detectors. We can expect the results of this study will make use of location allocation of detectors in highway.
Lee Ju-Wang;Kim Bum-Sik;Moon Young-Hyun;Hong Hyo-Sik;Yoo Kwang-Kyun
Proceedings of the KSR Conference
/
2005.05a
/
pp.1159-1164
/
2005
현재 철도청이 운용중인 열차운행관리 시스템(Railway Traffic Management System, RTMS)은 서울, 대전, 부산, 순천 그리고 영주 등으로 총 5개 지역본부로 분산되어 있어 업무의 중복을 줄이고, 자동화(Automation)된 열차집중제어장치(Central Traffic Control, CTC)를 구축하기 위해 지역본부를 대전으로 통합하는 프로젝트를 진행중이다. 본 논문은 철도청 사령실 통합 신호설비 구축 프로젝트에 의거하여 열차 경합을 검지 또는 예측하고 운영자에게 최소의 시간 내에 최적의 해소 대책을 제시함을 목적으로 하는 열차 경합 검지 시스템을 구현하는 과정에서 작성되었다. 여기에서는 열차 경합 검지에 대한 개요와 검지 가능한 경합 종류에 대해 기술하고, 실제 구현된 알고리즘의 기본적인 내용, 프로세스의 구성도 및 시뮬레이션 결과를 설명하려고 한다.
About 91.1% of Railway-Highway Crossings (RHC) in Korea use a Constant Distance Warning System(CDWS), while about 8.9% use a Constant Warning Time System(CWTS). The CDWS does not recognize speed differences of approaching trains and provides only waiting times to vehicles and pedestrians based on the highest speed of approaching trains. Under the CDWS, therefore, low speed trains provide unnecessary waiting times at crossings which often generates complains to vehicle drivers and pedestrians and may cause wrong decisions to pass the crossings. The objective of this research is to improve the safety of the RHC by developing accurate a CWTS. In this research a train speed and location detection system was developed with ultra sonic detectors. Locations of the detectors was decided based on the highest speed and the minimum warning time of Saemaul of 160 km/h. To validate the algorithms of the newly developed systems the lab tests were conducted. The results show that the train detection system provides accurate locations of trains and the maximum error between real speeds of trains and those of the system was 0.07m/s.
The Purpose of this thesis is to develop a vehicle classification algorithm using single Magnetometer detector during presence time of vehicle detection and is to examine a held application from field test. We collected data using Magnetometer detector on freeway and used digital data to change voltage values according to magnetic flux density in analysis. We collected these datum during the presence time and then obtained characteristics from wave form in these datum. Based on these characteristics, We used the following three methods for this a1gorithm :1. Template Matching Method,2. Neural Network Method using Back-propagation Algorithm 3. Complex Method using changed slope points and mixing method 1, 2. Of course, Before processing of over three methods, These data were processed normalizing by 20, 40 of size in only X axis and moving average by 0, 3, 4, 5 of size. Vehicle classification were Processed in three steps ; 2, 3, 5 types classification. In 2 types vehicle classification, recognition rate is 83% by template matching method.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.