• Title/Summary/Keyword: 검증방안

Search Result 4,311, Processing Time 0.035 seconds

A Cross-Sectional Study on Fatigue and Self-Reported Physical Symptoms of Vinylhouse Farmers (비닐하우스 농작업자의 피로도와 주관적 신체증상에 관한 연구)

  • Lim, Gyung-Soon;Kim, Chung-Nam
    • Journal of agricultural medicine and community health
    • /
    • v.28 no.2
    • /
    • pp.15-29
    • /
    • 2003
  • Objectives: This study was done to find out fatigue and self-reported physical symptoms of Vinylhouse farmers. The results of this study could be used as a basic data to develop health promotion program for Vinylhouse farmers who are suffering from fatigue and physical symptoms. Methods: The 166 respondents, who were working in Vinylhouse and were living in a remoted area where the primary health post located, were participated in this study. Thirty: 30 items of self-reported fatigue scale was used to evaluate the farmers fatigue level which made by Japanese industrial and hygenic association(1988). Twenty four: 24 items of index used by researcher for self-reported physical symptoms was from Lee In Bae's(1999) modified Index which was originated from Cornell Medical Index(1949). Another questionnaires used in this study were developed by researcher through related documents. Results: The results of this study were as follows; Fatigue scores were high in accordance with women(t=-2.212, p<0.05), worse recognized health state(F=20.610, p<.001), lack of sleeping hours(F=3.937, p<0.05), eat irregularly(t=-3.883, p<0.001), don't take a bath after application of chemical(t=-2.950, p<0.01), working time per a day(F=5.633, p<0.01) & working time per a day in Vinylhouse(F=5.247, p<0.01) were long. Subjective physical symptoms were high in accordance with women(t=-3.176, p<0.01), worse recognized health state(F=35.335, p<0.001), and low education(F=3.467, p<0.05). eat irregularly(t=-3.384, p<0.01), alcohol drinking(t=-2.389, p<0.05). When farmers don't take a bath after application of chemical show high(t=-3.188, p<0.01). As a result, the factors affecting to Vinylhouse worker's health were irregular diet habit, scarce exercise, lack of proper rest, symptoms oriented from Vinylhouse work in contaminated environment with high temperature and humidity. Conclusions: Based on this study, health promotion program is necessary for Vinylhouse workers. Also, the development of continuously practical strategy of healthy life style including exercise and comprehensive health promotion program considered the country's social and cultural background are needed.

  • PDF

The Effects of Gastrodiae Rhizoma Powder on Plasma Lipid Profiles in the Elderly with Cardiovascular Disease (천마분말 복용이 심혈관계 질환 노인들의 혈중 지질 양상 변화에 미치는 영향)

  • Yang, Kyung-Mi
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.37 no.7
    • /
    • pp.858-868
    • /
    • 2008
  • This study was carried out to investigate the effects of Gastrodiae Rhizoma powder on plasma lipid profiles in elderly volunteers with hyperlipidemia, hypertension, diabetes or heart disease. 32 elderly people, 11 males and 21 females aged $60{\sim}77$ years, were given Gastrodiae Rhizoma powder 15 g twice daily for 6 months. We investigated the antheropometric data, general characteristics and dietary habit by using questionnaires. Fasting blood samples were collected from the subjects before and after this 6 months intervention study. Blood pressure, glucose, hemoglobin and lipid levels of plasma, atherogenic index (AI) and cardiac risk factors (CRF, LHR, HTR) were determined before and after consumption of Gastrodiae Rhizoma powder. The mean body mass index (BMI) of the male and female subjects were 22.4 and 23.6, respectively. The percent of ideal body weight (PIBW) of males and females were 105.6% and 122.3%, respectively. The subjects had decreased intake frequency of fish and meat in their dietary habit. After consumption of Gastrodiae Rhizoma powder, there were no significant differences in blood pressure; however, the blood glucose significantly decreased with Gastrodiae Rhizoma intake in the males. In the subjects, the levels of plasma total cholesterol, triglyceride, and LDL-cholesterol were decreased by the consumption of Gastrodiae Rhizoma powder; while the levels of plasma LDL-cholesterol was significantly decreased in female. Blood pressure and biochemical assessment (blood glucose, hemoglobin, triglyceride, total cholesterol, LDL and HDL-cholesterol) of the subjects were within the normal range. It was found that AI, CRF and LHR were significantly decreased by Gastrodiae Rhizoma intake. The present results indicate that dietary supplementation of Gastrodiae Rhizoma improved lipid metabolism and cardiac risk factor in cardiovascular disease.

The Health Behavior Patterns of Some Rural Residents in Korea and Their Association with Health Status and Health Management Practice (일부 농촌주민의 건강행위유형과 건강상태 및 건강관련실태와의 관련성)

  • Kim, Young-Gab;Kang, Myung-Guen;Ryu, So-Yeon;Kim, Ki-Soon;Kang, Sung-Deuk
    • Journal of agricultural medicine and community health
    • /
    • v.29 no.1
    • /
    • pp.43-63
    • /
    • 2004
  • Objectives: The purpose of this study was to classify the patterns of health behaviors of some rural residents in Korea by sub-grouping them into populations with similar patterns of diet quality, physical activity, alcohol consumption and cigarette smoking, and then to investigate the relationship between these health behavior patterns and health status or health management of them. Methods: The study subjects were 722 rural residents above 20 years old on a typical rural district in Korea, and the data used in this study was from the survey data for health planning of a health center. Study questionnaire for this survey was developed from modifying the questionnaire for 'National Nutrition and Health Study' conducted in 1998. To classify health behavior patterns, cluster analysis was conducted. And to test the association of health behavior patterns with health status or health management, multiple logistic regression analysis were conducted. Results: The results and their implications of this study were as follows: 1. We identified six health behavior typologies : 67.8% of the sample had a good diet quality but showed sedentary activity level(good diet lifestyle) and 10.9% had heavy smoking behavior(smoking lifestyle). Individuals included in fitness lifestyle cluster(6.2%) had high physical activity level and those in drinking life style(2.6%) had had mainly large amount of alcohol. Zero point six percent of sample were included in hedonic lifestyle cluster, who showed poor health behaviors in all. Those included in passive lifestyle(11.9%) had no active health promoting activities but tended to avoid risk taking health behavior such as cigarette smoking and alcohol drinking. 2. As a result of logistic regression analysis, to compare with the individuals in good diet lifestyle, the prevalence of chronic diseases of those in fitness lifestyle showed higher and that of those in smoking lifestyle, drinking lifestyle, hedonic lifestyle, passive lifestyle showed lower than them, retrospectively. 3. Adjusting with general characteristics and health status, to compare with the individuals in good diet lifestyle, the proportion of those who had good health management practices in fitness lifestyle was higher, and the proportion of those who had health check in past 2 years was lower than them, retrospectively. Conclusions: There were some differences in health behavior patterns between rural population and national population, which influenced significantly on health status and health management practice of them. We suggested that the health promotion program for them be developed with considering these points.

  • PDF

The Impact of Conflict and Influence Strategies Between Local Korean-Products-Selling Retailers and Wholesalers on Performance in Chinese Electronics Distribution Channels: On Moderating Effects of Relational Quality (중국 가전유통경로에서 한국제품 현지 판매업체와 도매업체간 갈등 및 영향전략이 성과에 미치는 영향: 관계 질의 조절효과)

  • Chun, Dal-Young;Kwon, Joo-Hyung;Lee, Guo-Ming
    • Journal of Distribution Research
    • /
    • v.16 no.3
    • /
    • pp.1-32
    • /
    • 2011
  • I. Introduction: In Chinese electronics industry, the local wholesalers are still dominant but power is rapidly swifting from wholesalers to retailers because in recent foreign big retailers and local mass merchandisers are growing fast. During such transient period, conflicts among channel members emerge important issues. For example, when wholesalers who have more power exercise influence strategies to maintain status, conflicts among manufacturer, wholesaler, and retailer will be intensified. Korean electronics companies in China need differentiated channel strategies by dealing with wholesalers and retailers simultaneously to sell more Korean products in competition with foreign firms. For example, Korean electronics firms should utilize 'guanxi' or relational quality to form long-term relationships with whloesalers instead of power and conflict issues. The major purpose of this study is to investigate the impact of conflict, dependency, and influence strategies between local Korean-products-selling retailers and wholesalers on performance in Chinese electronics distribution channels. In particular, this paper proposes effective distribution strategies for Korean electronics companies in China by analyzing moderating effects of 'Guanxi'. II. Literature Review and Hypotheses: The specific purposes of this study are as follows. First, causes of conflicts between local Korean-products-selling retailers and wholesalers are examined from the perspectives of goal incongruence and role ambiguity and then effects of these causes are found out on perceived conflicts of local retailers. Second, the effects of dependency of local retailers upon wholesalers are investigated on local retailers' perceived conflicts. Third, the effects of non-coercive influence strategies such as information exchange and recommendation and coercive strategies such as threats and legalistic pleas exercised by wholesalers are explored on perceived conflicts by local retailers. Fourth, the effects of level of conflicts perceived by local retailers are verified on local retailers' financial performance and satisfaction. Fifth, moderating effects of relational qualities, say, 'quanxi' between wholesalers and retailers are analyzed on the impact of wholesalers' influence strategies on retailers' performances. Finally, moderating effects of relational qualities are examined on the relationship between conflicts and performance. To accomplish above-mentioned research objectives, Figure 1 and the following research hypotheses are proposed and verified. III. Measurement and Data Analysis: To verify the proposed research model and hypotheses, data were collected from 97 retailers who are selling Korean electronic products located around Central and Southern regions in China. Covariance analysis and moderated regression analysis were employed to validate hypotheses. IV. Conclusion: The following results were drawn using structural equation modeling and hierarchical moderated regression. First, goal incongruence perceived by local retailers significantly affected conflict but role ambiguity did not. Second, consistent with conflict spiral theory, the level of conflict decreased when retailers' dependency increased toward wholesalers. Third, noncoercive influence strategies such as information exchange and recommendation implemented by wholesalers had significant effects on retailers' performance such as sales and satisfaction without conflict. On the other hand, coercive influence strategies such as threat and legalistic plea had insignificant effects on performance in spite of increasing the level of conflict. Fourth, 'guanxi', namely, relational quality between local retailers and wholesalers showed unique effects on performance. In case of noncoercive influence strategies, 'guanxi' did not play a role of moderator. Rather, relational quality and noncoercive influence strategies can serve as independent variables to enhance performance. On the other hand, when 'guanxi' was well built due to mutual trust and commitment, relational quality as a moderator can positively function to improve performance even though hostile, coercive influence strategies were implemented. Fifth, 'guanxi' significantly moderated the effects of conflict on performance. Even if conflict arises, local retailers who form solid relational quality can increase performance by dealing with dysfunctional conflict synergistically compared with low 'quanxi' retailers. In conclusion, this study verified the importance of relational quality via 'quanxi' between local retailers and wholesalers in Chinese electronic industry because relational quality could cross out the adverse effects of coercive influence strategies and conflict on performance.

  • PDF

An Analysis of the Comparative Importance of Systematic Attributes for Developing an Intelligent Online News Recommendation System: Focusing on the PWYW Payment Model (지능형 온라인 뉴스 추천시스템 개발을 위한 체계적 속성간 상대적 중요성 분석: PWYW 지불모델을 중심으로)

  • Lee, Hyoung-Joo;Chung, Nuree;Yang, Sung-Byung
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.1
    • /
    • pp.75-100
    • /
    • 2018
  • Mobile devices have become an important channel for news content usage in our daily life. However, online news content readers' resistance to online news monetization is more serious than other digital content businesses, such as webtoons, music sources, videos, and games. Since major portal sites distribute online news content free of charge to increase their traffics, customers have been accustomed to free news content; hence this makes online news providers more difficult to switch their policies on business models (i.e., monetization policy). As a result, most online news providers are highly dependent on the advertising business model, which can lead to increasing number of false, exaggerated, or sensational advertisements inside the news website to maximize their advertising revenue. To reduce this advertising dependencies, many online news providers had attempted to switch their 'free' readers to 'paid' users, but most of them failed. However, recently, some online news media have been successfully applying the Pay-What-You-Want (PWYW) payment model, which allows readers to voluntarily pay fees for their favorite news content. These successful cases shed some lights to the managers of online news content provider regarding that the PWYW model can serve as an alternative business model. In this study, therefore, we collected 379 online news articles from Ohmynews.com that has been successfully employing the PWYW model, and analyzed the comparative importance of systematic attributes of online news content on readers' voluntary payment. More specifically, we derived the six systematic attributes (i.e., Type of Article Title, Image Stimulation, Article Readability, Article Type, Dominant Emotion, and Article-Image Similarity) and three or four levels within each attribute based on previous studies. Then, we conducted content analysis to measure five attributes except Article Readability attribute, measured by Flesch readability score. Before conducting main content analysis, the face reliabilities of chosen attributes were measured by three doctoral level researchers with 37 sample articles, and inter-coder reliabilities of the three coders were verified. Then, the main content analysis was conducted for two months from March 2017 with 379 online news articles. All 379 articles were reviewed by the same three coders, and 65 articles that showed inconsistency among coders were excluded before employing conjoint analysis. Finally, we examined the comparative importance of those six systematic attributes (Study 1), and levels within each of the six attributes (Study 2) through conjoint analysis with 314 online news articles. From the results of conjoint analysis, we found that Article Readability, Article-Image Similarity, and Type of Article Title are the most significant factors affecting online news readers' voluntary payment. First, it can be interpreted that if the level of readability of an online news article is in line with the readers' level of readership, the readers will voluntarily pay more. Second, the similarity between the content of the article and the image within it enables the readers to increase the information acceptance and to transmit the message of the article more effectively. Third, readers expect that the article title would reveal the content of the article, and the expectation influences the understanding and satisfaction of the article. Therefore, it is necessary to write an article with an appropriate readability level, and use images and title well matched with the content to make readers voluntarily pay more. We also examined the comparative importance of levels within each attribute in more details. Based on findings of two studies, two major and nine minor propositions are suggested for future empirical research. This study has academic implications in that it is one of the first studies applying both content analysis and conjoint analysis together to examine readers' voluntary payment behavior, rather than their intention to pay. In addition, online news content creators, providers, and managers could find some practical insights from this research in terms of how they should produce news content to make readers voluntarily pay more for their online news content.

Customer Behavior Prediction of Binary Classification Model Using Unstructured Information and Convolution Neural Network: The Case of Online Storefront (비정형 정보와 CNN 기법을 활용한 이진 분류 모델의 고객 행태 예측: 전자상거래 사례를 중심으로)

  • Kim, Seungsoo;Kim, Jongwoo
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.2
    • /
    • pp.221-241
    • /
    • 2018
  • Deep learning is getting attention recently. The deep learning technique which had been applied in competitions of the International Conference on Image Recognition Technology(ILSVR) and AlphaGo is Convolution Neural Network(CNN). CNN is characterized in that the input image is divided into small sections to recognize the partial features and combine them to recognize as a whole. Deep learning technologies are expected to bring a lot of changes in our lives, but until now, its applications have been limited to image recognition and natural language processing. The use of deep learning techniques for business problems is still an early research stage. If their performance is proved, they can be applied to traditional business problems such as future marketing response prediction, fraud transaction detection, bankruptcy prediction, and so on. So, it is a very meaningful experiment to diagnose the possibility of solving business problems using deep learning technologies based on the case of online shopping companies which have big data, are relatively easy to identify customer behavior and has high utilization values. Especially, in online shopping companies, the competition environment is rapidly changing and becoming more intense. Therefore, analysis of customer behavior for maximizing profit is becoming more and more important for online shopping companies. In this study, we propose 'CNN model of Heterogeneous Information Integration' using CNN as a way to improve the predictive power of customer behavior in online shopping enterprises. In order to propose a model that optimizes the performance, which is a model that learns from the convolution neural network of the multi-layer perceptron structure by combining structured and unstructured information, this model uses 'heterogeneous information integration', 'unstructured information vector conversion', 'multi-layer perceptron design', and evaluate the performance of each architecture, and confirm the proposed model based on the results. In addition, the target variables for predicting customer behavior are defined as six binary classification problems: re-purchaser, churn, frequent shopper, frequent refund shopper, high amount shopper, high discount shopper. In order to verify the usefulness of the proposed model, we conducted experiments using actual data of domestic specific online shopping company. This experiment uses actual transactions, customers, and VOC data of specific online shopping company in Korea. Data extraction criteria are defined for 47,947 customers who registered at least one VOC in January 2011 (1 month). The customer profiles of these customers, as well as a total of 19 months of trading data from September 2010 to March 2012, and VOCs posted for a month are used. The experiment of this study is divided into two stages. In the first step, we evaluate three architectures that affect the performance of the proposed model and select optimal parameters. We evaluate the performance with the proposed model. Experimental results show that the proposed model, which combines both structured and unstructured information, is superior compared to NBC(Naïve Bayes classification), SVM(Support vector machine), and ANN(Artificial neural network). Therefore, it is significant that the use of unstructured information contributes to predict customer behavior, and that CNN can be applied to solve business problems as well as image recognition and natural language processing problems. It can be confirmed through experiments that CNN is more effective in understanding and interpreting the meaning of context in text VOC data. And it is significant that the empirical research based on the actual data of the e-commerce company can extract very meaningful information from the VOC data written in the text format directly by the customer in the prediction of the customer behavior. Finally, through various experiments, it is possible to say that the proposed model provides useful information for the future research related to the parameter selection and its performance.

Sentiment Analysis of Korean Reviews Using CNN: Focusing on Morpheme Embedding (CNN을 적용한 한국어 상품평 감성분석: 형태소 임베딩을 중심으로)

  • Park, Hyun-jung;Song, Min-chae;Shin, Kyung-shik
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.2
    • /
    • pp.59-83
    • /
    • 2018
  • With the increasing importance of sentiment analysis to grasp the needs of customers and the public, various types of deep learning models have been actively applied to English texts. In the sentiment analysis of English texts by deep learning, natural language sentences included in training and test datasets are usually converted into sequences of word vectors before being entered into the deep learning models. In this case, word vectors generally refer to vector representations of words obtained through splitting a sentence by space characters. There are several ways to derive word vectors, one of which is Word2Vec used for producing the 300 dimensional Google word vectors from about 100 billion words of Google News data. They have been widely used in the studies of sentiment analysis of reviews from various fields such as restaurants, movies, laptops, cameras, etc. Unlike English, morpheme plays an essential role in sentiment analysis and sentence structure analysis in Korean, which is a typical agglutinative language with developed postpositions and endings. A morpheme can be defined as the smallest meaningful unit of a language, and a word consists of one or more morphemes. For example, for a word '예쁘고', the morphemes are '예쁘(= adjective)' and '고(=connective ending)'. Reflecting the significance of Korean morphemes, it seems reasonable to adopt the morphemes as a basic unit in Korean sentiment analysis. Therefore, in this study, we use 'morpheme vector' as an input to a deep learning model rather than 'word vector' which is mainly used in English text. The morpheme vector refers to a vector representation for the morpheme and can be derived by applying an existent word vector derivation mechanism to the sentences divided into constituent morphemes. By the way, here come some questions as follows. What is the desirable range of POS(Part-Of-Speech) tags when deriving morpheme vectors for improving the classification accuracy of a deep learning model? Is it proper to apply a typical word vector model which primarily relies on the form of words to Korean with a high homonym ratio? Will the text preprocessing such as correcting spelling or spacing errors affect the classification accuracy, especially when drawing morpheme vectors from Korean product reviews with a lot of grammatical mistakes and variations? We seek to find empirical answers to these fundamental issues, which may be encountered first when applying various deep learning models to Korean texts. As a starting point, we summarized these issues as three central research questions as follows. First, which is better effective, to use morpheme vectors from grammatically correct texts of other domain than the analysis target, or to use morpheme vectors from considerably ungrammatical texts of the same domain, as the initial input of a deep learning model? Second, what is an appropriate morpheme vector derivation method for Korean regarding the range of POS tags, homonym, text preprocessing, minimum frequency? Third, can we get a satisfactory level of classification accuracy when applying deep learning to Korean sentiment analysis? As an approach to these research questions, we generate various types of morpheme vectors reflecting the research questions and then compare the classification accuracy through a non-static CNN(Convolutional Neural Network) model taking in the morpheme vectors. As for training and test datasets, Naver Shopping's 17,260 cosmetics product reviews are used. To derive morpheme vectors, we use data from the same domain as the target one and data from other domain; Naver shopping's about 2 million cosmetics product reviews and 520,000 Naver News data arguably corresponding to Google's News data. The six primary sets of morpheme vectors constructed in this study differ in terms of the following three criteria. First, they come from two types of data source; Naver news of high grammatical correctness and Naver shopping's cosmetics product reviews of low grammatical correctness. Second, they are distinguished in the degree of data preprocessing, namely, only splitting sentences or up to additional spelling and spacing corrections after sentence separation. Third, they vary concerning the form of input fed into a word vector model; whether the morphemes themselves are entered into a word vector model or with their POS tags attached. The morpheme vectors further vary depending on the consideration range of POS tags, the minimum frequency of morphemes included, and the random initialization range. All morpheme vectors are derived through CBOW(Continuous Bag-Of-Words) model with the context window 5 and the vector dimension 300. It seems that utilizing the same domain text even with a lower degree of grammatical correctness, performing spelling and spacing corrections as well as sentence splitting, and incorporating morphemes of any POS tags including incomprehensible category lead to the better classification accuracy. The POS tag attachment, which is devised for the high proportion of homonyms in Korean, and the minimum frequency standard for the morpheme to be included seem not to have any definite influence on the classification accuracy.

An Analysis of the Specialist's Preference for the Model of Park-Based Mixed-Use Districts in Securing Urban Parks and Green Spaces Via Private Development (민간개발 주도형 도시공원.녹지 확보를 위한 공원복합용도지구 모형에 대한 전문가 선호도 분석)

  • Lee, Jeung-Eun;Cho, Se-Hwan
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.39 no.6
    • /
    • pp.1-11
    • /
    • 2011
  • The research was aimed to verify the feasibility of the model of Park-Based Mixed-Use Districts(PBMUD) around urban large park to secure private-based urban parks through the revision of the urban zoning system. The PBMUD is a type of urban zoning district in which park-oriented land use is mixed with the urban land uses of residents, advertising, business, culture, education and research. The PBMUD, delineated from and based on a new paradigm of landscape urbanism, is a new urban strategy to secure urban parks and to cultivate urban regeneration around parks and green spaces to enhance the quality of the urban landscape and to ameliorate urban environmental disasters like climate change. This study performed a questionnaire survey and analysis after a review of literature related to PBMUD. The study looked for specialists in the fields of urban planning and landscape architecture such as officials, researchers and engineers to respond to the questionnaire, which asked about degree of preference. The conclusions of this study were as follows. Firstly, specialists prefer the PBMUD at 79.3% for to 20.7% against ratio, indicating the feasibility of the model of PBMUD. The second, the most preferable reasons for the model, were the possibility of securing park space around urban parks and green spaces that assures access to park and communication with each area. The third, the main reason for non-preference for the model, was a lack of understanding of PBMUD added to the problems of unprofitable laws and regulations related to urban planning and development. These proposed a revision of the related laws and regulations such as the laws for planning and use of national land, laws for architecture etc. The fourth, the most preferred type of PBMUD, was cultural use mixed with park use in every kind of mix of land use. The degree of preference was lower in the order of use of commercial, residential, business, and education(research) when mixed with park use. The number of mixed-use amenities with in the park was found to be an indicator determining preference. The greater the number, the lower was preference frequencies, especially when related to research and business use. The fifth, the preference frequencies of the more than 70% among the respondents to the mixed-use ratio between park use and the others, was in a ratio of 60% park use and 40% other urban use. These research results will help to launch new future research subjects on the revision of zoning regulations in the laws for the planning and uses of national land and architectural law as well as criteria and indicators of subdivision planning as related to a PBMUD model.

The Comparison of the Ultra-Violet Radiation of Summer Outdoor Screened by the Landscaping Shade Facilities and Tree (조경용 차양시설과 수목에 의한 하절기 옥외공간의 자외선 차단율 비교)

  • Lee, Chun-Seok;Ryu, Nam-Hyong
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.41 no.6
    • /
    • pp.20-28
    • /
    • 2013
  • The purpose of this study was to compare the ultra-violet(UV) radiation under the landscaping shade facilities and tree with natural solar UV of the outdoor space at summer middays. The UVA+B and UVB were recorded every minute from the $20^{th}$ of June to the $26^{th}$ of September 2012 at a height of 1.1m above in the four different shading conditions, with fours same measuring system consisting of two couple of analog UVA+B sensor(220~370nm, Genicom's GUVA-T21GH) and UVB sensor(220~320nm, Genicom's GUVA-T21GH) and data acquisition systems(Comfile Tech.'s Moacon). Four different shading conditions were under an wooden shelter($W4.2m{\times}L4.2m{\times}H2.5m$), a polyester membrane structure ($W4.9m{\times}L4.9m{\times}H2.6m$), a Salix koreensis($H11{\times}B30$), and a brick-paved plot without any shading material. Based on the 648 records of 17 sunny days, the time serial difference of natural solar UVA+B and UVB for midday periods were analysed and compared, and statistical analysis about the difference between the four shading conditions was done based on the 2,052 records of daytime period from 10 A.M. to 4 P.M.. The major findings were as follows; 1. The average UVA+B under the wooden shelter, the membrane and the tree were $39{\mu}W/cm^2$(3.4%), $74{\mu}W/cm^2$(6.4%), $87{\mu}W/cm^2$(7.6%) respectively, while the solar UVA+B was $1.148{\mu}W/cm^2$. Which means those facilities and tree screened at least 93% of solar UV+B. 2. The average UVB under the wooden shelter, the membrane and the tree were $12{\mu}W/cm^2$(5.8%), $26{\mu}W/cm^2$(13%), $17{\mu}W/cm^2$(8.2%) respectively, while the solar UVB was $207{\mu}W/cm^2$. The membrane showed the highest level and the wooden shelter lowest. 3. According to the results of time serial analysis, the difference between the three shaded conditions around noon was very small, but the differences of early morning and late afternoon were apparently big. Which seems caused by the matter of the formal and structural characteristics of the shading facilities and tree, not by the shading materials itself. In summary, the performance of the four landscaping shade facilities and tree were very good at screening the solar UV at outdoor of summer middays, but poor at screening the lateral UV during early morning and late afternoon. Therefore, it can be apparently said that the more delicate design of shading facilities and big tree or forest to block the additional lateral UV, the more effective in conditioning the outdoor space reducing the useless or even harmful radiation for human activities.

How to improve the accuracy of recommendation systems: Combining ratings and review texts sentiment scores (평점과 리뷰 텍스트 감성분석을 결합한 추천시스템 향상 방안 연구)

  • Hyun, Jiyeon;Ryu, Sangyi;Lee, Sang-Yong Tom
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.1
    • /
    • pp.219-239
    • /
    • 2019
  • As the importance of providing customized services to individuals becomes important, researches on personalized recommendation systems are constantly being carried out. Collaborative filtering is one of the most popular systems in academia and industry. However, there exists limitation in a sense that recommendations were mostly based on quantitative information such as users' ratings, which made the accuracy be lowered. To solve these problems, many studies have been actively attempted to improve the performance of the recommendation system by using other information besides the quantitative information. Good examples are the usages of the sentiment analysis on customer review text data. Nevertheless, the existing research has not directly combined the results of the sentiment analysis and quantitative rating scores in the recommendation system. Therefore, this study aims to reflect the sentiments shown in the reviews into the rating scores. In other words, we propose a new algorithm that can directly convert the user 's own review into the empirically quantitative information and reflect it directly to the recommendation system. To do this, we needed to quantify users' reviews, which were originally qualitative information. In this study, sentiment score was calculated through sentiment analysis technique of text mining. The data was targeted for movie review. Based on the data, a domain specific sentiment dictionary is constructed for the movie reviews. Regression analysis was used as a method to construct sentiment dictionary. Each positive / negative dictionary was constructed using Lasso regression, Ridge regression, and ElasticNet methods. Based on this constructed sentiment dictionary, the accuracy was verified through confusion matrix. The accuracy of the Lasso based dictionary was 70%, the accuracy of the Ridge based dictionary was 79%, and that of the ElasticNet (${\alpha}=0.3$) was 83%. Therefore, in this study, the sentiment score of the review is calculated based on the dictionary of the ElasticNet method. It was combined with a rating to create a new rating. In this paper, we show that the collaborative filtering that reflects sentiment scores of user review is superior to the traditional method that only considers the existing rating. In order to show that the proposed algorithm is based on memory-based user collaboration filtering, item-based collaborative filtering and model based matrix factorization SVD, and SVD ++. Based on the above algorithm, the mean absolute error (MAE) and the root mean square error (RMSE) are calculated to evaluate the recommendation system with a score that combines sentiment scores with a system that only considers scores. When the evaluation index was MAE, it was improved by 0.059 for UBCF, 0.0862 for IBCF, 0.1012 for SVD and 0.188 for SVD ++. When the evaluation index is RMSE, UBCF is 0.0431, IBCF is 0.0882, SVD is 0.1103, and SVD ++ is 0.1756. As a result, it can be seen that the prediction performance of the evaluation point reflecting the sentiment score proposed in this paper is superior to that of the conventional evaluation method. In other words, in this paper, it is confirmed that the collaborative filtering that reflects the sentiment score of the user review shows superior accuracy as compared with the conventional type of collaborative filtering that only considers the quantitative score. We then attempted paired t-test validation to ensure that the proposed model was a better approach and concluded that the proposed model is better. In this study, to overcome limitations of previous researches that judge user's sentiment only by quantitative rating score, the review was numerically calculated and a user's opinion was more refined and considered into the recommendation system to improve the accuracy. The findings of this study have managerial implications to recommendation system developers who need to consider both quantitative information and qualitative information it is expect. The way of constructing the combined system in this paper might be directly used by the developers.