• 제목/요약/키워드: 검색 키워드 의미분류

검색결과 35건 처리시간 0.025초

메타 태그를 이용한 자동 웹페이지 분류 시스템 (An Automatic Web Page Classification System Using Meta-Tag)

  • 김상일;김화성
    • 한국통신학회논문지
    • /
    • 제38B권4호
    • /
    • pp.291-297
    • /
    • 2013
  • 최근 월드 와이드 웹(World Wide Web)의 사용이 폭발적으로 증가함에 따라 다양한 정보를 포함하고 있는 웹 페이지들의 양도 엄청나게 증가 하였다. 따라서 웹상에 존재 하고 있는 웹페이지들에 대한 접근을 용이하게 하고, 그룹화를 통한 검색을 가능하게 하기 위해 웹 페이지 분류의 필요성이 대두 되고 있다. 웹 페이지 분류는 기존의 웹 상에 산재 되어 있는 웹페이지들을 비슷한 문서 유형 또는 같은 키워드를 사용하는 문서들의 묶음으로 구분하는 작업을 의미하며, 웹 페이지 분류 기술은 웹페이지 검색, 그룹 검색, 메일 필터링 등의 분야에 응용될 수 있는 기술이다. 하지만 웹상에 존재하는 웹페이지들을 사람이 수동적으로 분류하는 방법으로는 현재 월드 와이드 웹에 존재하는 엄청난 양의 웹페이지들을 처리할 수 없으며, 자동적인 분류 방법 역시 서로 다른 형태로 작성된 웹페이지들을 정확하게 분류할 수 없다는 문제로 인해 한계를 보이고 있다. 본 논문에서는 서로 다른 형태로 작성된 웹 문서들에 대한 부정확한 분류 문제를 해결하기위해 웹페이지에 존재하는 메타 정보를 획득하여 자동적으로 분류하는 메타 태그기반의 자동화된 웹페이지 분류 시스템을 제안하였다.

문서분류를 위한 의미적 주제선정방법 (Semantic Topic Selection Method of Document for Classification)

  • 고광섭;김판구;이창훈;황명권
    • 한국정보통신학회논문지
    • /
    • 제11권1호
    • /
    • pp.163-172
    • /
    • 2007
  • 웹은 전세계 규모의 네트워크로써 문자, 화상, 음성 등의 미디어 정보들을 페이지 단위로 관리되며, 링크를 이용하여 분산된 정보들을 연결하고 있다. 이러한 웹의 지속적인 발전으로 무수한 정보들을 축적하고 있으며, 그 중 텍스트로 구성된 문서들이 주를 이룬다. 사용자는 이렇게 많은 정보들 중에서 자신이 원하는 특정 정보를 찾기 위해 웹을 사용한다. 그래서 웹은 사용자 요구에 적합한 정보를 검색해 주기 위해 계속적인 시도와 많은 연구들로 발전되고 있다. 확률을 이용한 방법, 통계적인 기법을 이용한 방법, 벡터 유사도를 이용한 방법, 베이지안 자동문서 분류 방법 등 기존의 방법들은 문서의 의미적인 주제나 특징을 정확하게 처리 할 수 없어 사용자는 재검색을 해야 하는 문제점을 갖는다. 특히, 국내 문서 분류를 위한 연구는 많이 이루어지지 않아 검색에 더욱 어렵다. 이러한 문제점을 보완하기 위해 본 논문에서는 국내문서의 효율적이고 의미적인 분류를 위해 출현 개념의 TF(Term Frequency)와 주변 개념들과의 관계된 정도(RV : Relation Value)를 추출한다. 그리고 추출된 키워드들을 국내 어휘 사전인 U-WIN에 매핑하여 문서의 주제를 선택하고 본문에서 제 시하는 분류방법에 의해 웹 문서를 분류한다. 이는 문서 내 개념들의 관계를 이용하여 문서의 주제를 선정하고 문서의 의미적인 분류를 가능하게 한다.

트위터의 감정 분석을 통한 실시간 장소 추천 시스템 (Real-time Spatial Recommendation System based on Sentiment Analysis of Twitter)

  • 오평화;황병연
    • 한국전자거래학회지
    • /
    • 제21권3호
    • /
    • pp.15-28
    • /
    • 2016
  • 본 논문에서는 모바일에서 획득한 GPS(Global Positioning System)를 활용하여 사용자의 위치 주변에서 발생한 SNS 데이터를 수집하고 분석을 통해 사용자가 원하는 장소를 추천하는 시스템을 제안한다. 이를 위해 트위터에서 위치정보를 포함하는 게시글을 표본 집합으로 정하고 모바일의 위치정보와 함께 활용했을 때, 사용자의 검색의도에 부합하는 양질의 정보를 제공할 수 있음을 실험을 통해 증명하였다. 이를 위해 2015년 11월부터 12월까지 수집한 트윗(Tweet)을 대상으로 임의의 위치정보와 검색어로 구성된 질의를 구성하고 형태소 분석을 거쳐 분석에 적합한 형태의 데이터로 변환하였다. 또한 장소 추천을 위해 감정사전을 구축하여 긍정 및 부정을 의미하는 극성 키워드들을 정의하고 레이블을 구성한 후, 감정사전과 극성키워드를 이용해 개별 트윗의 추천 점수를 도출하였다. 논문은 추천 점수와 사용자의 현재 위치, 트윗이 작성된 위치와 사용자 위치 사이의 거리 계산을 통해 가까운 거리 순으로 10개의 장소 정보를 정렬하여 결과를 보인다. 또한 성능평가를 위해 감정 분석된 트윗에 대한 정밀도와 재현율을 도출하여 시스템의 성능을 확인한다. 실험은 '맛집', '공연' 2개의 키워드와 10개 지역을 기준으로 수행하였다. 실험 결과 키워드 1개당 수집된 트윗은 평균 10.5개였으며, 총 10번의 실험에 사용된 평균 210개의 트윗 중 긍정 또는 부정의 단어를 포함한 트윗의 개수는 평균 122개였다. 또한 감정 분석을 통해 긍정 또는 부정으로 분류된 트윗은 평균 65개였으며 그 중 실제로 긍정 또는 부정의 의미를 담은 트윗은 평균 46개였다. 이를 통해 시스템은 38%의 재현율로 감정요소를 담은 트윗을 탐지하고, 71%의 정밀도로 감정 분석을 수행했음을 확인했다.

국가연구시설장비의 유사도 판단기법에 관한 연구 (A Study on Similarity Calculation Method Between Research Infrastructure)

  • 김용주;김영찬
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제7권12호
    • /
    • pp.469-476
    • /
    • 2018
  • 연구개발과정에서의 필수요소인 연구장비의 공동활용 및 효율적인 구축을 위해 한국에서는 국가예산으로 구축된 장비정보를 필수적으로 등록하도록 하고 있다. 등록정보의 다양한 활용(중복성 검토, 성능예측, 대체장비추천)을 위해 본 연구에서는 현재 유사장비검색기법에 대해 분석하고 유사도 산출 방법을 제시하였다. 이를 통해 자연어 상태인 장비정보에서 키워드를 추출하여 LSA 기법을 적용하면 키워드간의 유사도산출 및 장비정보 간 유사도 분석이 가능함을 확인하였으며 향후 연구장비분류정보를 접목하여 적용할 경우 의미있는 유사도 산출 및 이를 활용한 다양한 서비스가 가능 할 것으로 예측된다.

도서 데이터와 본문 텍스트 통합 마이닝을 기반으로 한 도서 콘텐츠 장르 분석 및 시각화 시스템 구현 (Implementation of Analysis of Book Contents Genre and Visualization System based on Integrated Mining of Book Details and Body Texts)

  • 홍민하;박경훈;이원진;김승훈
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2015년도 제51차 동계학술대회논문집 23권1호
    • /
    • pp.27-29
    • /
    • 2015
  • 최근 IT기술의 발달로 인하여 다양한 분야에서 IT기술을 활용한 융합기술의 시도가 많아지고 있다. 특히 인터넷의 발달과 전자책(e-Book) 시장규모가 커짐에 따라 도서에 대한 정보가 많아지고 있으며, 이러한 정보를 분석하여 활용하는 서비스 시스템에 대한 관심이 높아지고 있다. 하지만 현재 서비스되고 있는 대부분의 온라인 서점에서는 도서의 기본 서지정보와 같이 도서 본문 내용과는 무관한 출판사나 서점에서 도서를 관리하기 위한 정보만을 제공하고 있으며, 도서에 대한 다양한 정보를 활용한 키워드 추출 및 장르 분류를 통한 검색의 효율성 제공이 미흡한 현실이다. 본 논문에서는 도서의 본문 텍스트 정보를 마이닝 처리하여 도서 페이지의 흐름에 따라 포함되어있는 장르를 분류하고 이에 대한 결과를 사용자에게 친화적인 시각화 기법으로 제공되는 시스템을 설계하고 구축하였다. 제안한 서비스 시스템은 의미 분석을 기반으로 도서 정보의 구체적, 실제적, 직관적 정보를 제공하여 도서 추천 서비스에 활용될 것이다.

  • PDF

특허 정보 검색을 위한 대체어 후보 추출 방법 (Extracting Alternative Word Candidates for Patent Information Search)

  • 백종범;김성민;이수원
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제15권4호
    • /
    • pp.299-303
    • /
    • 2009
  • 특허 정보 검색은 연구 및 기술 개발에 앞서 선행연구의 존재 여부를 확인하기 위한 사전 조사 목적으로 주로 사용된다. 이러한 특히 정보 검색에서 원하는 정보를 얻지 못하는 원인은 다양하다. 그 중에서 본 연구는 키워드 불일치에 의한 정보 누락을 최소화하기 위한 대체어 후보 추출 방법을 제안한다. 본 연구에서 제안하는 대체어 후보 추출 방법은 문장 내에서 함께 쓰이는 단어들이 비슷한 두 단어는 서로 비슷한 의미를 지닐 것이다라는 직관적 가설을 전제로 한다. 이와 같은 가설을 만족하는 대체어를 추출하기 위해서 본 연구에서는 분류별 집중도, 신뢰도를 이용한 연관단어뭉치, 연관단어 뭉치간 코사인 유사도 및 순위 보정 기법을 제안한다. 본 연구에서 제안한 대체어 후보 추출 방법의 성능은 대체어 유형별로 작성된 평가지표를 이용하여 재현율을 측정함으로써 평가하였으며, 제안 방법이 문서 벡터공간 모델의 성능보다 더 우수한 것으로 나타났다.

Lexico-Semantic Pattern을 이용한 오픈 도메인 질의 응답 시스템 (Open-domain Question Answering Using Lexico-Semantic Patterns)

  • 이승우;정한민;곽병관;김동석;차정원;안주희;이근배;김학수;김경선;서정연
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2001년도 제13회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.538-545
    • /
    • 2001
  • 본 연구에서는 오픈 도메인에서 동작할 수 있는 질의 응답 시스템(Open-domain Question Answer ing System)을 구현하고 영어권 TREC에 참가한 결과를 기술하였다. 정답 유형을 18개의 상위 노드를 갖는 계층구조로 분류하였고, 질문 처리에서는 LSP(Lexico-Semantic Pattern)으로 표현된 문법을 사용하여 질문의 정답 유형을 결정하고, lemma 형태와 WordNet 의미, stem 형태의 3가지 유형의 키워드로 구성된 질의를 생성한다. 이 질의를 바탕으로, 패시지 선택에서는 문서검색 엔진에 의해 검색된 문서들을 문장단위로 나눠 정수를 계산하고, 어휘체인(Lexical Chain)을 고려하여 인접한 문장을 결합하여 패시지를 구성하고 순위를 결정한다. 상위 랭크의 패시지를 대상으로, 정답 처리에서는 질문의 정답 유형에 따라 품사와 어휘, 의미 정보로 기술된 LSP 매칭과 AAO (Abbreviation-Appositive-Definition) 처리를 통해 정답을 추출하고 정수를 계산하여 순위를 결정한다. 구현된 시스템의 성능을 평가하기 위해 TREC10 QA Track의 main task의 질문들 중, 200개의 질문에 대해 TRIC 방식으로 자체 평가를 한 결과, MRR(Mean Reciprocal Rank)은 0.341로 TREC9의 상위 시스템들과 견줄 만한 성능을 보였다.

  • PDF

개념 망 구조를 기반으로 한 문항 관리 시스템의 설계 및 구현 (Design and Implementation of a Question Management System based on a Concept Lattice)

  • 김미혜
    • 한국콘텐츠학회논문지
    • /
    • 제8권11호
    • /
    • pp.412-425
    • /
    • 2008
  • 이-러닝을 통한 교육에 있어 학습자의 학업 성취도를 향상시킬 수 있는 중요한 요인 중의 하나는 다양한 평가문항을 제공하여 학습자가 원하는 주제의 문제들을 용이하게 검색하여 학습할 수 있도록 지원하는 것이다. 그러나 평가문항을 위한 시스템은 주로 구문해석에 기반 한 키워드 검색과 영역별 단원 중심의 계층적인 분류체계에만 의존하고 있어 영역별 연관 관계에 의한 통합된 유형의 문항 검색에는 어려움을 지닌다. 본 논문에서는 C언어 프로그래밍 학습을 위한 문항을 웹상에서 쉽게 관리하고 유지할 수 있는 더불어 관리된 문항들을 효과적으로 검색하여 활용할 수 있는 문항관리 및 검색 시스템을 설계하고 구현 하였다. 제안된 문항 검색 시스템은 사용자 질의가 가지는 의미로부터 문항간의 개념적 연관 관계에 의한 검색을 가능하게 함으로써 단일 주제의 문항뿐만 아니라 영역별 연관 관계에 의한 통합된 유형의 문항들을 편리하게 검색하여 학습에 활용할 수 있도록 하였다. 따라서 제안된 시스템은 교과의 기본적인 원리, 개념의 이해뿐만 아니라 종합적인 지식 활용 및 문제 해결 능력 향상을 지원하는 시스템으로 기대된다.

다중 얼굴 태깅 자동화 (Automatic Tagging Scheme for Plural Faces)

  • 이충연;이재동;진성아
    • 전자공학회논문지CI
    • /
    • 제47권3호
    • /
    • pp.11-21
    • /
    • 2010
  • 최근 웹페이지의 생성 및 웹이 가진 정보량이 기하급수적으로 늘면서 사용자의 검색 목적을 파악하여 효율을 높이기 위한 다양한 방법이 연구되고 있으며, 태깅 시스템이 하나의 대안으로 떠오르고 있다. 태깅 시스템은 인터넷 사용자로 하여금 태그라고 불리는 메타데이터를 글, 사진, 동영상 등에 부여하도록 함으로써 콘텐츠의 검색 및 브라우징을 편리하게 하는 시스템이다. 이처럼 태그는 해당 페이지의 대표 키워드를 의미하므로 콘텐츠 분류의 기준을 마련할 수 있으나, 사용자에 의해 직접 입력되어야 하는 수고가 필요하고, 또한 무분별한 태깅으로 인해 오히려 분류에 방해가 되는 등의 문제점들이 있다. 본 논문에서는 이러한 태깅의 문제를 해결하기 위한 방법으로 얼굴인식 알고리즘을 활용한 영상콘텐츠 내에서의 다중 얼굴 태깅 자동화 방법을 제시한다. 이를 위해 먼저 여러 얼굴검출 방법 중 Haar-like features와 AdaBoost 알고리즘을 이용하여 빠른 속도와 높은 정확도로 영상콘텐츠 내에서 얼굴 영역을 검출한다. 이후 PCA와 고유얼굴을 이용하여, 검출해 낸 얼굴을 데이터베이스에 미리 저장해 놓은 프로필 사진과 비교, 인식해냄으로써 해당 인물에 대한 정보를 불러와서 자동으로 태깅하는 시스템을 구현하였다. 이러한 새로운 방식의 태깅 기술은 현존하는 사진공유, 쇼핑, 검색 등의 수많은 웹서비스에 적용이 가능하며, 특히 소셜네트워크서비스에서의 사진 관리나 인물검색 등에서 활용할 때 큰 효과를 보일 것으로 기대된다.

코로나 전후 행복 이슈 변화 분석 및 행복 증진 방안 연구 (A Topic Modeling Approach to the Analysis of Happiness Issues Before and After Pandemic)

  • 김가혜;이소현
    • 지능정보연구
    • /
    • 제28권3호
    • /
    • pp.81-103
    • /
    • 2022
  • 전 세계적으로 정신건강과 웰빙에 대한 중요성을 인식하고 있고, 세계 행복 보고서를 통해 꾸준하게 대중의 행복 수치를 기록하고 있다. 2019년 중국에서 발생한 코로나19는 사람들의 일상적인 생활에 많은 변화를 가져왔고, 전염병의 장기화로 인한 스트레스 누적이 사람들의 행복에 영향을 주고 있다. 기존 연구에서는 팬데믹 이후 '우울', '불안'과 같은 정신건강에 부정적인 영향을 알렸고, 수치상으로 행복 지수가 낮아졌음을 밝혔다. 전염병 이후 한국 사회에서 대중들이 느끼는 행복의 이슈 변화에 대한 구체적인 이슈를 분석하는 연구는 부족하다. 따라서, 본 연구는 코로나19 이후 한국인의 행복이슈에 생긴 변화를 파악하고 행복을 증진시킬 수 있는 방안을 찾는 것을 목표로 한다. 코로나19 이전 데이터는 2018년 1월 1일부터 2019년 12월 31일까지, 코로나19 이후 데이터는 2020년 1월 1일부터 2021년 12월 31일까지로 시기를 나누어 수집하였다. ERG 이론에 기반한 하위 키워드 32가지를 검색하여 다양한 측면에서 데이터를 수집하였다. 코로나19 전후 토픽 모델링 결과를 국회 미래연구원에서 발표한 '행복 지표 2.0'의 '건강', '안전', '경제', '교육', '관계 및 사회참여', '여가', '삶의 만족' 영역으로 분류하여 비교 분석하였다. 토픽과 키워드의 세부적인 의미에서 코로나19 전후의 차이를 발견할 수 있었다. 각 영역의 관점에서 행복 증진 방안을 토픽과 키워드를 비교 해석한 결과를 기반으로 제시하였다. 본 논문은 실제 대중들의 '행복' 관련 의견을 마이닝하여 코로나19로 인한 심리적 변화에 대한 연구를 확장했다는 점에서 학술적으로 시사한다. 또한, 기존 행복 증진 불행 경감 방안에 대한 연구를 기반으로 하여 객관적인 행복 지표 영역을 활용해 행복 증진 방안을 구체적으로 제시했다는 점에서 실무적 시사점을 갖는다.