• Title/Summary/Keyword: 검색어 추천

Search Result 59, Processing Time 0.029 seconds

Folksonomy-based Personalized Web Search System (폭소노미 기반 개인화 웹 검색 시스템)

  • Kim, Dong-Wook;Kang, Soo-Yong;Kim, Han-Joon;Lee, Byung-Jeong
    • Journal of Digital Contents Society
    • /
    • v.11 no.1
    • /
    • pp.105-115
    • /
    • 2010
  • Search engines provide web documents that are related to user's query. However, using only the query terms that user provided, it is hard for search engines to know user's exact intention and provide the very matching web documents. To remedy this problem, search systems are needed to exploit personalized search technologies. In this paper, we propose not only a novel personalized query recommendation scheme based on folksonomy but also a new personalized search service architecture which reduces the risk of privacy violation while enabling search service providers to provide other various personalized services such as personalized advertisement.

WWW Information Retrieval Using a Genetic Algorithm (유전자 알고리즘을 이용한 WWW 정보검색)

  • 서영우;장병탁
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.03a
    • /
    • pp.89-92
    • /
    • 1998
  • 최근 웹 상에서 여러 가지 정보에 대한 접근이 용이하여 많은 사람들이 다양한 검색 시스템을 이용하여 원하는 정보를 얻고 있다. 그러나 웹의 크기가 점점 커지고 그에 따른 사용량 또한 증가함에 딸 원하는 시간 안에 원하는 수준의 정보를 얻기가 매우 어렵다. 본 논문에서는 유전자 알고리즘을 이용하여 사용자의 요구수준에 보다 가까운 저오를 검색하는 학습방법에 대해 고찰한다. 검색 엔진의 초기 검색 결과로부터 만들어진 색인어들이 하나의 염색체로 구성한다. 염색체를 구성하고 있는 각 유전자는 사용자의 기호에 맞는 URL을 추천하기 위해 검색된 문서들과 연관성 값을 비교하여 유전 연산자에 의해 변형된다. 제시된 저오 검색 방식은 기존의 검색 엔진으로부터 반환되는 검색 결과로부터 사용자가 원하는 장보에 연관된 하나 이상의 색인어를 생성한 다음 재검색하여 연관성이 높은 소수의 정보만을 사용자에게 제공한다. 제안된 학습 방식과 기존 검색 엔진으로 검색된 결과를 초기의 사용자 정보 요구와의 연관성에 있어서 비교 분석하였다.

  • PDF

Semantic Search and Recommendation of e-Catalog Documents through Concept Network (개념 망을 통한 전자 카탈로그의 시맨틱 검색 및 추천)

  • Lee, Jae-Won;Park, Sung-Chan;Lee, Sang-Keun;Park, Jae-Hui;Kim, Han-Joon;Lee, Sang-Goo
    • The Journal of Society for e-Business Studies
    • /
    • v.15 no.3
    • /
    • pp.131-145
    • /
    • 2010
  • Until now, popular paradigms to provide e-catalog documents that are adapted to users' needs are keyword search or collaborative filtering based recommendation. Since users' queries are too short to represent what users want, it is hard to provide the users with e-catalog documents that are adapted to their needs(i.e., queries and preferences). Although various techniques have beenproposed to overcome this problem, they are based on index term matching. A conventional Bayesian belief network-based approach represents the users' needs and e-catalog documents with their corresponding concepts. However, since the concepts are the index terms that are extracted from the e-catalog documents, it is hard to represent relationships between concepts. In our work, we extend the conventional Bayesian belief network based approach to represent users' needs and e-catalog documents with a concept network which is derived from the Web directory. By exploiting the concept network, it is possible to search conceptually relevant e-catalog documents although they do not contain the index terms of queries. Furthermore, by computing the conceptual similarity between users, we can exploit a semantic collaborative filtering technique for recommending e-catalog documents.

Intelligent Workbench for Korean Concept-Net Construction (한국어 개념망 구축을 위한 지능형 워크벤치)

  • Hur Jeong;Choi Mi-Ran;Jang Myung-Gil
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.07b
    • /
    • pp.472-474
    • /
    • 2005
  • 개념망은 상당히 도메인에 의존적인 언어자원에 해당한다. 따라서, 도메인이 다른 분야에 적용하고자 한다면, 많은 수정이 요구된다. 그러나 개념망의 편집은 언어 이해 능력이 뛰어난 언어학자들 조차도 상당히 많은 시간이 요구되는 작업이다. 대부분의 시간소요는 개념망의 전체적인 계층구조를 스캐닝하는 작업과 특정 노드를 검색하는 작업에 의한 것이다. 기 구축된 개념망을 분석하면 계층관계에 있는 어휘들간의 일관된 규칙을 발견할 수 있다. 이 논문에서는 어휘들의 뜻풀이와 상위어간의 관계성, 복합명사와 상위어간의 관계성을 통계적으로 분석하였다 분석된 결과를 기반으로 확률모델을 이용하여 상위어 추천 기능을 구현하였다. 상위어 추천 기능의 시간 절감 효과를 실험하기 위해 실험자 2인을 대상으로 개념망 구축에 소요되는 시간을 측정하였다. 상위어 추천 기능이 있는 지능형 워크벤치를 이용할 경우 개념망 작업 시간은 약 $65\%$정도로 단축되는 것을 확인할 수 있었다. 본 지능형 워크벤치는 다양한 도메인에서 요구되는 개념망 구축의 시간 비용 절감에 크게 기절할 것으로 기대된다.

  • PDF

A Study of Personalized Retrieval System through Society of Korean Journal Articles of Science and Technology (개인화 검색시스템에 관한 연구 - 과학기술학회마을을 중심으로 -)

  • Kim, Kwang-Young;Kwak, Seung-Jin
    • Journal of Korean Library and Information Science Society
    • /
    • v.41 no.1
    • /
    • pp.149-165
    • /
    • 2010
  • In this research, we analyze about the general service provided by Society of Korean journal articles of science and technology. Personalized retrieval services which are suitable to the articles service were developed based on this. That is, there are personalized retrieval system based on user's keyword, authors navigation system, automatic topic recommendation system based on author's keyword, and similar user automatic recommendation system. In this research, personalized service methods being suitable to the articles service of Society tries to be considered through the user survey.

  • PDF

Development of a Notice Classification and Recommendation Application Using Machine Learning Techniques (머신러닝 기반 공지문 분류 및 추천 애플리케이션 개발)

  • Kim, Hyemin;Oh, Jiun;Chung, Hyerin;Lee, Ki Yong
    • Annual Conference of KIPS
    • /
    • 2018.05a
    • /
    • pp.420-423
    • /
    • 2018
  • 본 논문에서는 웹 및 문자 공지문을 자동으로 분류하고 추천함으로써 사용자가 원하는 공지문만을 볼 수 있도록 하는 애플리케이션을 개발한다. 본 애플리케이션은 공지문을 여러 카테고리로 자동 분류하여 사용자가 원하는 카테고리에 속한 공지문만을 볼 수 있도록 하며, 사용자가 선호할 만한 공지문을 추천하는 기능을 제공한다. 공지문 분류를 위해 다층 신경망 모델과 Naive Bayes 분류기를 사용하였으며, 공지문 추천을 위해 키워드 기반 자체 알고리즘을 사용하였다. 그 밖에 Word2Vec 을 활용한 검색어 추천 등 부가 기능을 제공하여 사용자가 쉽게 공지문을 찾을 수 있도록 하였다. 본 애플리케이션을 통해 사용자는 수많은 공지문 중 관심 있는 공지문만을 효율적으로 확인할 수 있다.

Design and Evaluation of a Personalized Search Service Model Based on Web Portal User Activities (웹 포털 이용자 로그 데이터에 기반한 개인화 검색 서비스 모형의 설계 및 평가)

  • Lee, So-Young;Chung, Young-Mee
    • Journal of the Korean Society for information Management
    • /
    • v.23 no.4 s.62
    • /
    • pp.179-196
    • /
    • 2006
  • This study proposes an expanded model of personalized search service based on community activities on a Korean Web portal. The model is composed of defining subject categories of users, providing personalized search results, and recommending additional subject categories and queries. Several experiments were performed to verify the feasibility and effectiveness of the proposed model. It was found that users' activities on community services provide valuable data for identifying their Interests, and the personalized search service increases users' satisfaction.

Multimedia Contents Recommendation Method using Mood Vector in Social Networks (소셜네트워크에서 분위기 벡터를 이용한 멀티미디어 콘텐츠 추천 방법)

  • Moon, Chang Bae;Lee, Jong Yeol;Kim, Byeong Man
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.24 no.6
    • /
    • pp.11-24
    • /
    • 2019
  • The tendency of buyers of web information is changing from the cost-effectiveness to the cost-satisfaction. There is such tendency in the recommendation of multimedia contents, some of which are folksonomy-based recommendation services using mood. However, there is a problem that they does not consider synonyms. In order to solve this problem, some studies have solved the problem by defining 12 moods of Thayer model as AV values (Arousal and Valence), but the recommendation performance is lower than that of a keyword-based method at the recall level 0.1. In this paper, we propose a method based on using mood vector of multimedia contents. The method can solve the synonym problem while maintaining the same performance as the keyword-based method even at the recall level 0.1. Also, for performance analysis, we compare the proposed method with an existing method based on AV value and a keyword-based method. The result shows that the proposed method outperform the existing methods.

Answer Suggestion for Knowledge Search (지식검색의 답변 추천 시스템)

  • Lee, Hochang;Lee, Hyun Ah
    • Annual Conference on Human and Language Technology
    • /
    • 2012.10a
    • /
    • pp.201-205
    • /
    • 2012
  • 지식검색은 방대한 지식정보 데이터를 바탕으로 사용자의 질문에 대한 답변을 검색하는 시스템이다. 이러한 사용자 참여로 구축된 지식정보는 잘못된 답변으로 인한 신뢰성 부족과 중복 답변 등의 문제점이 있어, 원하는 답변을 찾기 위해서는 지식검색에서 다수의 답변을 읽고 그 답변의 진위여부를 판단해야만 한다. 만일 정답에 포함되는 단어나 어구가 답변들에서 나타내는 통계적 특성을 활용하여 사용자가 원하는 답변을 제시할 수 있다면, 지식검색의 효용성과 신뢰성이 크게 향상될 수 있다. 본 논문에서는 지식정보 데이터 분석을 통해 사용자의 질문의 유형을 단어, 목록, 도표, 글의 4가지 유형으로 분류하고, 각 분류에 대한 사용자 질의어의 답변을 요약하는 방식을 제안한다. 단어, 목록, 글 유형은 TF와 IDF, 어휘 간의 거리 정보를 통해서 중요 단어를 추출하여 각 유형에 적합한 형식의 답변을 사용자에게 제시한다. 도표형은 답변들에서 사용자의 의견 정보를 추출하여 의견 통계를 도표로서 제시한다.

  • PDF

Analysis of Preference Criteria for Personalized Web Search (개인화된 웹 검색을 위한 선호 기준 분석)

  • Lee, Soo-Jung
    • The Journal of Korean Association of Computer Education
    • /
    • v.13 no.1
    • /
    • pp.45-52
    • /
    • 2010
  • With rapid increase in the number of web documents, the problem of information overload in Internet search is growing seriously. In order to improve web search results, previous research studies employed user queries/preferred words and the number of links in the web documents. In this study, performance of the search results exploiting these two criteria is examined and other preference criteria for web documents are analyzed. Experimental results show that personalized web search results employing queries and preferred words yield up to 1.7 times better performance over the current search engine and that the search results using the number of links gives up to 1.3 times better performance. Although it is found that the first of the user's preference criteria for web documents is the contents of the document, readability and images in the document are also given a large weight. Therefore, performance of web search personalization algorithms will be greatly improved if they incorporate objective data reflecting each user's characteristics in addition to the number of queries and preferred words.

  • PDF