• Title/Summary/Keyword: 검색가중치

Search Result 401, Processing Time 0.034 seconds

Image Retrieval using Distribution Block Signature of Main Colors' Set and Performance Boosting via Relevance feedback (주요 색상의 분포 블록기호를 이용한 영상검색과 유사도 피드백을 통한 이미지 검색)

  • 박한수;유헌우;장동식
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.2
    • /
    • pp.126-136
    • /
    • 2004
  • This paper proposes a new content-based image retrieval algorithm using color-spatial information. For the purpose, the paper suggests two kinds of indexing key to prune away irrelevant images to a given query image; MCS(Main Colors' Set), which is related with color information and DBS (Distribution Block Signature), which is related with spatial information. After successively applying these filters to a database, we could get a small amount of high potential candidates that are somewhat similar to the query image. Then we would make use of new QM(Quad modeling) and relevance feedback mechanism to obtain more accurate retrieval. It would enhance the retrieval effectiveness by dynamically modulating the weights of color-spatial information. Experiments show that the proposed algorithm can apply successfully image retrieval applications.

Image Retrieval Using Color & Spatial Distribution between Pixel Layers (Pixel layer 들 간의 색상 공간 분포에 따른 공간적 분포를 이용한 영상 검색)

  • An, Jaehyun;Ha, Seong Jong;Lee, Sang Hwa;Cho, Nam Ik
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2012.07a
    • /
    • pp.294-297
    • /
    • 2012
  • 본 논문에서는 컬러 영상의 검색을 위하여 영상을 색상 정보에 기반한 pixel layer (cluster)의 집합체로 모델링하고, 두 layer 간의 유사도를 각 layer 를 이루는 pixel 들의 색상 분포에 따른 공간적 분포를 이용하여 측정하는 기법을 제안한다. 먼저 pixel layering 단계에서는 HSV 색 공간에서 mean-shift clustering 알고리즘을 통해 초기 layer 들을 얻고, 비슷한 색상의 layer 들은 합쳐 영상의 soft segmentation 과 유사한 결과를 얻는다. 비교할 두 영상에서 pixel layering 을 한 후, 각 layer 를 이진화된 공간분포 지도로 형성하고 그 차이를 비교함으로써 유사도를 측정한다. 이 때, 사용하는 가중치로서 HSV 색 공간 분포의 비슷한 정도를 정의하는데, 이는 HSV 색 공간을 XYZ 의 3 차원 좌표로 설정하고, overlap 되는 pixel 수로 정의하였다. 본 논문에서 제안한 pixel layer 들 간의 색상 공간 분포에 따른 공간적 분포를 이용한 영상 검색 기법은 MPEG-7 에서 정의한 대표색상 기반의 영상 검색보다 우수한 성능을 보여주었다.

  • PDF

Image Retrieval Using the Fusion of Texture Features (질감특징들의 융합을 이용한 영상검색)

  • 천영덕;서상용;김남철
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.3A
    • /
    • pp.258-267
    • /
    • 2002
  • We present an image retrieval method for improving retrieval performance by effective fusion of entropy features in wavelet region and wavelet moments. In this method, entropy features are sensitive to the local variation of gray level and well extract valley and edges. These features are effectively applied to contend-based image retrieval by well fusing to wavelet moments that represent texture property in multi-resolution. In order to evaluate the performance of the proposed method. We use Corel Draw Photo DB. Experiment results show that the proposed yields 11% better performance for Corel Draw Photo DB over wavelet moments method.

A Document Classification System Using Modified ECCD and Category Weight for each Document (Modified ECCD 및 문서별 범주 가중치를 이용한 문서 분류 시스템)

  • Han, Chung-Seok;Park, Sang-Yong;Lee, Soo-Won
    • The KIPS Transactions:PartB
    • /
    • v.19B no.4
    • /
    • pp.237-242
    • /
    • 2012
  • Web information service needs a document classification system for efficient management and conveniently searches. Existing document classification systems have a problem of low accuracy in classification, if a few number of feature words is selected in documents or if the number of documents that belong to a specific category is excessively large. To solve this problem, we propose a document classification system using 'Modified ECCD' feature selection method and 'Category Weight for each Document'. Experimental results show that the 'Modified ECCD' feature selection method has higher accuracy in classification than ${\chi}^2$ and the ECCD method. Moreover, combining the 'Category Weight for each Document' feature value and 'Modified ECCD' feature selection method results better accuracy in classification.

Keyword Extraction Using Syntactic Information of Question (질의문의 구문정보를 이용한 키워드 추출)

  • 양수정;서영훈
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2003.11a
    • /
    • pp.190-194
    • /
    • 2003
  • 자연언어 질의문에서 추출된 키워드들은 정답추출에 미치는 비중이 다른 경우가 많지만 키워드들에 대해 상대적인 가중치를 부여하기가 어렵다. 본 논문에서는 이러한 문제점을 해결하기 위하여 질의 문장의 구문 정보를 이용하여 중심키워드와 일반키워드들로 구분하였으며 이를 기반으로 키워드들 간의 가중치 부여 방법을 제안한다. 질의문 코퍼스로부터 질문 유형을 분석하여 구문을 추출하고 추출된 구문정보를 이용하여 질의문에서 키워드들을 추출한다. 이렇게 얻어진 키워드들을 이용하여 다량의 문서들 속에서 중심키워드와 일반키워드들 간의 불린 검색을 통해 질의문의 정답이 포함되었을 가능성이 큰 단락을 추출하고, 질의문과 추출된 단락간의 유사도 측정을 통해 단락을 순위화 한다. 본 논문에서 제안하는 시스템은 질의문의 정답이 포함된 단락추출에 대한 정확도를 향상시킬 것으로 기대된다.

  • PDF

Design of Keyword Extraction System Using TFIDF (TFIDF를 이용한 키워드 추출 시스템 설계)

  • 이말례;배환국
    • Korean Journal of Cognitive Science
    • /
    • v.13 no.1
    • /
    • pp.1-11
    • /
    • 2002
  • In this paper, a test was performed to determine whether words in Anchor Text were appropriate as key words. As a result of the test. there were proper words of high weighting factor, while some others did not even appear in the text. therefore, were not appropriate as key words. In order to resolve this problem. a new method was proposed to extract key words. Using the proposed method, inappropriate key words can be removed so that new key words be set, and then, ranking becomes possible with the TFIDF value as a weighting factor of the key word. It was verified that the new method has higher accuracy compared to the previous methods.

  • PDF

A Web Page Categorization Model Based on Document Structural Information (문서 구조 정보에 기반한 웹 페이지 범주화 모델)

  • Jung, Sung-Hwa;Lee, Jong-Hyeok
    • Annual Conference on Human and Language Technology
    • /
    • 1998.10c
    • /
    • pp.91-96
    • /
    • 1998
  • 본 논문에서는 주제범주 체계를 이용한 웹 검색이 가지는 장점을 이용 할 수 있도록 인터넷 웹 페이지들을 주제범주 체계에 따라 자동으로 분류하는 모델을 제시한다. 특히 웹 페이지 작성자들의 의도를 범주화에 반영할 수 있는 방법으로 HTML 태그를 이용한다. 즉 웹 페이지의 표현에 있어서 벡터 스페이스 모델에서의 색인어 빈도 가중치에 태그 가중치를 추가 하여 보다 좋은 성능을 얻도록 하였다. 그리고 주제범주를 표현하는데 사용되는 자질의 선정에는 기대상호정보, 상호정보 척도를, 문서간 유사도 비교에는 최근린법을 사용하였다. 전북대에서 정보탐정용으로 분류한 웹 페이지를 대상으로 실험하였으며, 기본 모델 대비 약 7%의 정확도 향상을 얻을 수 있었다.

  • PDF

Travel Route Scheduling System Utilizing Artificial Neural Networks (인공신경망을 활용한 여행경로 스케줄링 시스템)

  • Kim, Jun-Yeong;Kim, Seog-Gyu
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2017.07a
    • /
    • pp.394-396
    • /
    • 2017
  • 본 논문에서는 최근이슈가 되고 있는 인공지능에 대한 많은 기술 가운데 인공신경망을 활용하여 자신이 가고자 하는곳의 여행정보를 스케줄링 하는 시스템을 제안한다. 인공신경망 중에서도 비지도 학습(unsupervised learning)방식을 이용하며 이용자의 가중치에 따라 여행의 나이, 기간, 장소, 종류, 날씨, 계절, 인원 등으로 여행에서의 요소들을 히든레이어로 구성하여 여행지의 스케줄을 구성하여 이용자에게 제공하는 형태이다. 가중치에 따른 여행지의 분류작업이 완료가 되면 기간과 장소의 위치정보에 따라 스케줄링 작업을 완료하게 된다. 기존의 여행지에 대한 정보를 검색에 의해서 이루어지던 환경에서 인공신경망을 활용하여 원하는 여행정보를 추출함으로써 이용자에게 여행정보에 대한 체계화된 정보를 제공할 수 있다.

  • PDF

A Study on Indexing Strategy for Stock Ledger DB based on Heuristic Factor (경험적인 가중치를 고려한 증권시장용 계정 원장 DB의 인덱싱 방안 연구)

  • Kang, Seog-Hee;Choi, Jin-Young
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2006.11a
    • /
    • pp.329-332
    • /
    • 2006
  • DBMS상의 인덱싱 기법은 대부분 B-트리 또는 B-트리의 변형인 T-트리 등을 주로 사용하여 왔다. 이는 트리 구성에서 최적의 균형을 유지하여 자료검색 및 저장 공간에 효율적인 방안으로 인식되어 왔으며 대부분의 범용 DBMS에서 탁월한 성능을 보여 왔다. 그러나 고성능의 효율을 요구하는 OLTP 분야 중 특히 증권시장에서는 이런 일반적인 인덱싱 방법보다는 그 분야 특성에 맞는 새로운 인덱싱 방안의 적용이 성능 향상과 더불어 시스템의 최적의 효율을 얻어낼 수 있다. 본 논문에서는 증권시장용 원장(ledger) DB의 새로운 인덱싱 방안으로서, 먼저 원장 DB의 접근 형태를 이해하고 경험적인 데이터를 기준으로 산출한 가중치를 이용, 새로운 인덱싱 방안을 제시하고 기존 인덱싱 방법과의 비교를 통한 성능향상의 효율성을 보여준다.

  • PDF

Disease related Gene Identification Using Literature and Google data (텍스트마이닝 기법과 구글데이터를 이용한 질병관련 유전자 식별)

  • Kim, Jeong-U;Kim, Hyeon-Jin;Park, Sang-Hyeon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2013.11a
    • /
    • pp.1084-1087
    • /
    • 2013
  • 텍스트마이닝은(Text mining) 바이오분야에서 사용되는 도구 중 하나이다. 본 논문에서는 전립선암(Prostate cancer)과 관련된 질병 유전자(Disease gene)를 찾기 위해 텍스트마이닝을 이용하여 유전자 네트워크(Gene-network)를 구축하였다. 추가적으로 구글(Google) 검색을 통해 네트워크 내의 유전자 노드(Node)들 사이의 간선(Edge)에 새로운 가중치(Weight)를 추가하고 네트워크를 재구성하였다. 구축된 네트워크에서 노드와 노드 사이의 가중치를 기반으로 전립선암과 관련된 질병 유전자를 추출하였다. 본 논문의 방법은 성공적으로 네트워크를 구축하고 질병 유전자를 찾았으며, 구글 데이터를 사용하지 않고 네트워크를 구축하는 경우보다 더 높은 정확성을 입증했다.