This paper proposes a new content-based image retrieval algorithm using color-spatial information. For the purpose, the paper suggests two kinds of indexing key to prune away irrelevant images to a given query image; MCS(Main Colors' Set), which is related with color information and DBS (Distribution Block Signature), which is related with spatial information. After successively applying these filters to a database, we could get a small amount of high potential candidates that are somewhat similar to the query image. Then we would make use of new QM(Quad modeling) and relevance feedback mechanism to obtain more accurate retrieval. It would enhance the retrieval effectiveness by dynamically modulating the weights of color-spatial information. Experiments show that the proposed algorithm can apply successfully image retrieval applications.
An, Jaehyun;Ha, Seong Jong;Lee, Sang Hwa;Cho, Nam Ik
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2012.07a
/
pp.294-297
/
2012
본 논문에서는 컬러 영상의 검색을 위하여 영상을 색상 정보에 기반한 pixel layer (cluster)의 집합체로 모델링하고, 두 layer 간의 유사도를 각 layer 를 이루는 pixel 들의 색상 분포에 따른 공간적 분포를 이용하여 측정하는 기법을 제안한다. 먼저 pixel layering 단계에서는 HSV 색 공간에서 mean-shift clustering 알고리즘을 통해 초기 layer 들을 얻고, 비슷한 색상의 layer 들은 합쳐 영상의 soft segmentation 과 유사한 결과를 얻는다. 비교할 두 영상에서 pixel layering 을 한 후, 각 layer 를 이진화된 공간분포 지도로 형성하고 그 차이를 비교함으로써 유사도를 측정한다. 이 때, 사용하는 가중치로서 HSV 색 공간 분포의 비슷한 정도를 정의하는데, 이는 HSV 색 공간을 XYZ 의 3 차원 좌표로 설정하고, overlap 되는 pixel 수로 정의하였다. 본 논문에서 제안한 pixel layer 들 간의 색상 공간 분포에 따른 공간적 분포를 이용한 영상 검색 기법은 MPEG-7 에서 정의한 대표색상 기반의 영상 검색보다 우수한 성능을 보여주었다.
The Journal of Korean Institute of Communications and Information Sciences
/
v.27
no.3A
/
pp.258-267
/
2002
We present an image retrieval method for improving retrieval performance by effective fusion of entropy features in wavelet region and wavelet moments. In this method, entropy features are sensitive to the local variation of gray level and well extract valley and edges. These features are effectively applied to contend-based image retrieval by well fusing to wavelet moments that represent texture property in multi-resolution. In order to evaluate the performance of the proposed method. We use Corel Draw Photo DB. Experiment results show that the proposed yields 11% better performance for Corel Draw Photo DB over wavelet moments method.
Web information service needs a document classification system for efficient management and conveniently searches. Existing document classification systems have a problem of low accuracy in classification, if a few number of feature words is selected in documents or if the number of documents that belong to a specific category is excessively large. To solve this problem, we propose a document classification system using 'Modified ECCD' feature selection method and 'Category Weight for each Document'. Experimental results show that the 'Modified ECCD' feature selection method has higher accuracy in classification than ${\chi}^2$ and the ECCD method. Moreover, combining the 'Category Weight for each Document' feature value and 'Modified ECCD' feature selection method results better accuracy in classification.
Proceedings of the Korea Contents Association Conference
/
2003.11a
/
pp.190-194
/
2003
자연언어 질의문에서 추출된 키워드들은 정답추출에 미치는 비중이 다른 경우가 많지만 키워드들에 대해 상대적인 가중치를 부여하기가 어렵다. 본 논문에서는 이러한 문제점을 해결하기 위하여 질의 문장의 구문 정보를 이용하여 중심키워드와 일반키워드들로 구분하였으며 이를 기반으로 키워드들 간의 가중치 부여 방법을 제안한다. 질의문 코퍼스로부터 질문 유형을 분석하여 구문을 추출하고 추출된 구문정보를 이용하여 질의문에서 키워드들을 추출한다. 이렇게 얻어진 키워드들을 이용하여 다량의 문서들 속에서 중심키워드와 일반키워드들 간의 불린 검색을 통해 질의문의 정답이 포함되었을 가능성이 큰 단락을 추출하고, 질의문과 추출된 단락간의 유사도 측정을 통해 단락을 순위화 한다. 본 논문에서 제안하는 시스템은 질의문의 정답이 포함된 단락추출에 대한 정확도를 향상시킬 것으로 기대된다.
In this paper, a test was performed to determine whether words in Anchor Text were appropriate as key words. As a result of the test. there were proper words of high weighting factor, while some others did not even appear in the text. therefore, were not appropriate as key words. In order to resolve this problem. a new method was proposed to extract key words. Using the proposed method, inappropriate key words can be removed so that new key words be set, and then, ranking becomes possible with the TFIDF value as a weighting factor of the key word. It was verified that the new method has higher accuracy compared to the previous methods.
Annual Conference on Human and Language Technology
/
1998.10c
/
pp.91-96
/
1998
본 논문에서는 주제범주 체계를 이용한 웹 검색이 가지는 장점을 이용 할 수 있도록 인터넷 웹 페이지들을 주제범주 체계에 따라 자동으로 분류하는 모델을 제시한다. 특히 웹 페이지 작성자들의 의도를 범주화에 반영할 수 있는 방법으로 HTML 태그를 이용한다. 즉 웹 페이지의 표현에 있어서 벡터 스페이스 모델에서의 색인어 빈도 가중치에 태그 가중치를 추가 하여 보다 좋은 성능을 얻도록 하였다. 그리고 주제범주를 표현하는데 사용되는 자질의 선정에는 기대상호정보, 상호정보 척도를, 문서간 유사도 비교에는 최근린법을 사용하였다. 전북대에서 정보탐정용으로 분류한 웹 페이지를 대상으로 실험하였으며, 기본 모델 대비 약 7%의 정확도 향상을 얻을 수 있었다.
Proceedings of the Korean Society of Computer Information Conference
/
2017.07a
/
pp.394-396
/
2017
본 논문에서는 최근이슈가 되고 있는 인공지능에 대한 많은 기술 가운데 인공신경망을 활용하여 자신이 가고자 하는곳의 여행정보를 스케줄링 하는 시스템을 제안한다. 인공신경망 중에서도 비지도 학습(unsupervised learning)방식을 이용하며 이용자의 가중치에 따라 여행의 나이, 기간, 장소, 종류, 날씨, 계절, 인원 등으로 여행에서의 요소들을 히든레이어로 구성하여 여행지의 스케줄을 구성하여 이용자에게 제공하는 형태이다. 가중치에 따른 여행지의 분류작업이 완료가 되면 기간과 장소의 위치정보에 따라 스케줄링 작업을 완료하게 된다. 기존의 여행지에 대한 정보를 검색에 의해서 이루어지던 환경에서 인공신경망을 활용하여 원하는 여행정보를 추출함으로써 이용자에게 여행정보에 대한 체계화된 정보를 제공할 수 있다.
Proceedings of the Korea Information Processing Society Conference
/
2006.11a
/
pp.329-332
/
2006
DBMS상의 인덱싱 기법은 대부분 B-트리 또는 B-트리의 변형인 T-트리 등을 주로 사용하여 왔다. 이는 트리 구성에서 최적의 균형을 유지하여 자료검색 및 저장 공간에 효율적인 방안으로 인식되어 왔으며 대부분의 범용 DBMS에서 탁월한 성능을 보여 왔다. 그러나 고성능의 효율을 요구하는 OLTP 분야 중 특히 증권시장에서는 이런 일반적인 인덱싱 방법보다는 그 분야 특성에 맞는 새로운 인덱싱 방안의 적용이 성능 향상과 더불어 시스템의 최적의 효율을 얻어낼 수 있다. 본 논문에서는 증권시장용 원장(ledger) DB의 새로운 인덱싱 방안으로서, 먼저 원장 DB의 접근 형태를 이해하고 경험적인 데이터를 기준으로 산출한 가중치를 이용, 새로운 인덱싱 방안을 제시하고 기존 인덱싱 방법과의 비교를 통한 성능향상의 효율성을 보여준다.
Proceedings of the Korea Information Processing Society Conference
/
2013.11a
/
pp.1084-1087
/
2013
텍스트마이닝은(Text mining) 바이오분야에서 사용되는 도구 중 하나이다. 본 논문에서는 전립선암(Prostate cancer)과 관련된 질병 유전자(Disease gene)를 찾기 위해 텍스트마이닝을 이용하여 유전자 네트워크(Gene-network)를 구축하였다. 추가적으로 구글(Google) 검색을 통해 네트워크 내의 유전자 노드(Node)들 사이의 간선(Edge)에 새로운 가중치(Weight)를 추가하고 네트워크를 재구성하였다. 구축된 네트워크에서 노드와 노드 사이의 가중치를 기반으로 전립선암과 관련된 질병 유전자를 추출하였다. 본 논문의 방법은 성공적으로 네트워크를 구축하고 질병 유전자를 찾았으며, 구글 데이터를 사용하지 않고 네트워크를 구축하는 경우보다 더 높은 정확성을 입증했다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.