• Title/Summary/Keyword: 검사 시편

Search Result 242, Processing Time 0.027 seconds

Delamination Evaluation of Thermal Barrier Coating on Turbine Blade owing to Isothermal Degradation Using Ultrasonic C-scan Image (초음파 C-scan을 이용한 터빈 블레이드 열차폐코팅의 등온열화에 의한 박리 평가 기법)

  • Lee, Ho-Girl;Kim, Hak-Joon;Song, Sung-Jin;Seok, Chang-Sung
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.36 no.5
    • /
    • pp.353-362
    • /
    • 2016
  • Thermal barrier coating (TBC) is an essential element consisting of a super-alloy base and ceramic coating designed to achieve long operational time under a high temperature and pressure environment. However, the top coat of TBC can be delaminated at certain temperatures with long operation time. As the delamination of TBC is directly related to the blade damage, the coupling status of the TBC should be assured for reliable operation. Conventional studies of nondestructive evaluation have been made for detecting generation of thermally grown oxide (TGO) or qualitatively evaluating delamination in TBC. In this study, the ultrasonic C-scan method was developed to obtain the damage map inside TBC by estimating the delamination in a quantitative way. All specimens were isothermally degraded at $1,100^{\circ}C$ with different time, having different partial delamination area. To detect partial delamination in TBC, the C-scan was performed by a single transducer using pulse-echo method with normal incidence. Partial delamination coefficients of 1 mm to 6 mm were derived by the proportion of the surface reflection signal and flaw signal which were theoretical signals using Rogers-Van Buren and Kim's equations. Using the partial delamination coefficients, the partial delamination maps were obtained. Regardless of the partial delamination coefficient, partial delamination area was increased when degradation time was increased in TBC. In addition, a decrease in partial delamination area in each TBC specimen was observed when the partial delamination coefficient was increased. From the portion of the partial delamination maps, the criterion for delamination was derived.

Evaluation of Defects of Thermal Barrier Coatings by Thermal Shock Test Using Eddy Current Testing (열차폐 코팅층의 고온 열충격 시험후 ECT를 이용한 결함 평가)

  • Heo, Tae-Hoon;Cho, Youn-Ho;Lee, Joon-Hyun;Oh, Jeong-Seok;Lee, Koo-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.5
    • /
    • pp.450-457
    • /
    • 2009
  • Periodical thermal shock can introduce defects in thermal barrier coating made by layers of CoNiCrAlY bond coating(BC) and $ZrO_2-8wt%Y_2O_3$ ceramic top coating(TC) on Inconel-738 substrate using plasma spraying. Thermal shock test is performed by severe condition that is to heat until $1000^{\circ}C$ and cool until $20^{\circ}C$. As the number of cycle is increased, the fatigue by thermal shock is also increased. After test, the micro-structures and mechanical characteristics of thermal barrier coating were investigated by SEM, XRD. The TGO layer of $Al_2O_3$ is formed between BC and TC by periodical thermal shock test, and its change in thickness is inspected by eddy current test(ECT). By ECT test, it is shown that TGO and micro-crack can be detected and it is possible to predict the life of thermal barrier coating.

A Study on Manufacturing Method of Standard Void Specimens for Non-destructive Testing in RFI Process and Effect of Void on Mechanical Properties (RFI 공정 부품 비파괴검사용 표준 기공률 시편 제조 방법 및 기공률에 따른 기계적 물성 영향에 대한 연구)

  • Han, Seong-Hyeon;Lee, Jung-Wan;Kim, Jung-Soo;Kim, Young-Min;Kim, Wee-Dae;Um, Moon-Kwang
    • Composites Research
    • /
    • v.32 no.6
    • /
    • pp.395-402
    • /
    • 2019
  • The RFI process is an OoA process that fiber mats and resin films are laminated and cured in a vacuum bag. In case that resin film is insufficient to fill empty space in fibers, it makes void defect in composites and this void decrease mechanical properties of the composites. For this reason, non-destructive testing is usually used to evaluate void of manufactured composites. So, in this study, a manufacturing method of standard void specimens, which are able to be used as references in non-destructive testing, was proposed by controlling resin film thickness in the RFI process. Also, a fiber compaction test was proposed as a method to set the resin film thicknesses depending on target voids of manufacturing panels. The target void panels of 0%, 2%, and 4% were made by the proposed methods, and signal attenuation depending on void was measured by non-destructive testing and image analysis. In addition, voids of specimens for tensile, in-plane, short beam and compressive tests were estimated by signal attenuation, and mechanical properties were evaluated depending on the voids.

Normalization of the Misaligned Moire Pattern Using Fourier Transform (푸리에 변환을 이용한 미스얼라인된 Moire 무늬의 표준화)

  • Park, T.W.;Morimoto, Y.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.15 no.2
    • /
    • pp.386-394
    • /
    • 1995
  • The fringes developed by misalignment, an application of Moire method measuring small deformation of specimen, was transformed to frequency function. After that, theory of normalization was applied to derive the equations explaining the relation of the deformation and Moire fringes. Above all, the equations were produced to explain the rotation and increasing of fringes. In addition to that, the relation of fringe number and strain was illustated with the equations deduced from frequency function and geometrical method respectively. These two expressions were more effective than the used ones owing to the one can accommodate the other.

  • PDF

A Study on the Characteristics of the Excited Vibration Signals in a Thermosonic Test (초음파가진 열화장시험 시 가전된 진동 신호 특성 연구)

  • Kang, Bu-Byoung
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.31 no.2
    • /
    • pp.118-126
    • /
    • 2011
  • The characteristics of the responses obtained in thermosonic tests are investigated in this study to improve the performance of a thermosonic test system. Thermosonic tests are conducted with an acoustic horn with high power capability to investigate the characteristics of the vibration produced in turbine blades with complex geometry. The influences of the excitation signal that is input to the horn and the coupling methods between a clamp and the acoustic horn on the characteristics of the vibration excited in a component are presented. As a result, an excitation method with a fast narrow band chirp test (sweep test) and a stud coupling is proposed as an excitation method for thermosonic testing. This method can be applied to different types of turbine blades and also to other components.

The Evaluation Technique of Surface Region using Backward-Radiated Ultrasound (후방 복사된 초음파를 이용한 표면 지역의 평가 기술)

  • Kwon, S.D.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.16 no.4
    • /
    • pp.241-250
    • /
    • 1997
  • The velocity dispersion of surface acoustical wave(SAW) of Si layer/mesh Au/Si substrate was measured by the frequency analysis technique of backward radiation at liquid/solid interface. The difference of backward radiation patterns depending on used transducers (2, 5, 10MHz) confirmed that the backward radiation phenomenon was caused by the energy radiation from SAW generated in surface region. An ultrasonic goniometer was constructed to measure continuously the angular dependence of backscattered intensity. The angular dependences of backward radiation(5MHz) were measured for Ni layer/Al substrate specimens that were bonded by epoxy involving different content of Cu powder. It was known that the width and pattern of backward radiation had informations such as the velocity dispersion, bonding quality and structure of surface region.

  • PDF

The Effect of Surface Roughness according to Machining Conditions of Test Specimen for Precision Micro-milling Machining (미세정밀밀링 가공을 위한 검사시편의 가공조건에 따른 표면거칠기에 대한 영향 분석)

  • Sim, Min-Seop;Kim, Dong-Hyeon;Lee, Choon-Man
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.1
    • /
    • pp.49-55
    • /
    • 2015
  • Recently, many researchers and industry are looking for ways to decrease the use of lubricants because of economical and environmental reasons. One of the lubrication technologies is the MQL method. This study presents a research of MQL and Wet milling processes of Al 6061 material. For this experiment, the test specimen is suggested, and various machining conditions are applied. And, shape of micro-pattern which has been recently spotlighted is included in the test specimen. In order to compare MQL with Wet machining, several milling experiments were carried out, varying feed rate, cutting speed, depth of cut, etc. Finally, the surface roughness results of machining tests according to the process conditions were measured. It is expected that the results of machining experiments can be used to predict the surface roughness of various MQL milling processes.

Evaluation of Surface Fatigue Degradation Using Acoustic Nonlinearity of Surface Wave (표면파의 음향비선형 특성을 이용한 표면 피로열화 평가)

  • Lee, Jae-Ik;Lee, Tae-Hun;Jhang, Kyung-Young
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.5
    • /
    • pp.415-420
    • /
    • 2009
  • This paper reports the results of a case study for the evaluation of surface damage by using acoustic nonlinearity of surface wave. In this study, the experimental system was constructed to measure the acoustic nonlinear parameter of surface wave in an Aluminum 6061 T6 specimen of which surface was damaged by the three point bending fatigue test, and magnitudes of nonlinear parameter measured before and after the fatigue test were compared. Especially, since the surface fatigue damage by the three point bending is concentrated at the central position of loading, the change in the nonlinear parameter around this position was monitored. Experimental results showed that the measured nonlinear parameter at the outside of this position after the fatigue test was almost same as the initial value before the fatigue test, since the fatigue damage at this position was little. However, clear increase in the nonlinear parameter was noticed after the fatigue test at the central position of specimen where the surface fatigue damage is expected to be concentrated.

Development and Calibration of a Plate Type Eddy Current Standard (평판형 와전류 표준 시험편의 개발 및 교정)

  • Kim, Young-Joo;Kim, Young-Gil;Ahn, Bong-Young;Yoon, Dong-Jin
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.5
    • /
    • pp.393-397
    • /
    • 2007
  • Eddy current standard including an artificial slot for the calibration of absolute type surface probe was fabricated. Developed eddy current standard has the electric conductivity and dimensions, and contains artificial slot as established in ASTM E 1629. The width and depth of artificial slot are 0.1 mm and 0.5 mm respectively. This slot was only possible to measure the depth on the two side edges, and impossible for the middle part with general measurement tools. The ultrasonic test method was applied for measuring depth of the middle part of the artificial slot in the standard. Using this method the dimension could be measured successfully with uncertainty about $15\;{\mu}m$. Calibration of eddy current standard for the absolute probe can be performed by this technique.

Characterization of TiN Layered Substrate using Leaky Rayleigh Surface Wave (누설 레일리 표면파를 이용한 TiN 코팅 부재의 특성평가)

  • Kwon, Sung-Duk;Kim, Hak-Joon;Song, Sung-Jin
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.26 no.1
    • /
    • pp.7-11
    • /
    • 2006
  • Since ceramic layers coated on machinery components inevitably experience the changes in their properties it is necessary to evaluate the characteristics of ceramic coating layers nondestructively for a reliable use of coated components and 4heir remaining life prediction. To address such a need, in the present study, an ultrasonic backward radiation technique is applied to investigate the characteristics of leaky Rayleigh surface waves propagating through the very thin TiN ceramic layers coated on AISI 1045 steel or austenitic 304 steel substrate with three different conditions of surface roughness, coating layer thickness and wear condition. In the experiments performed in the present work, the peak angle and the peak amplitude of ultrasonic backward radiation profile varied sensitively according to three specimen preparation renditions. in fact, this result demonstrates a high possibility of the ultrasonic backward radiation as an effective tool for the nondestructive characterization of the resting layers even in such a thin regime.