• Title/Summary/Keyword: 건축물 화재안전

Search Result 300, Processing Time 0.024 seconds

A Study of Introducing Virtual Reality for Fire Disaster Preparedness Training (화재재난 대비훈련을 위한 가상현실의 도입방안 연구)

  • Kim, Jong Kouk;Han, Dong-Ho
    • The Journal of the Convergence on Culture Technology
    • /
    • v.4 no.1
    • /
    • pp.299-306
    • /
    • 2018
  • As recent Jecheon and Milyang fire cases show, the need for fire disaster training to prepare for a fire disaster continues to grow. In the event of a disaster, people become mentally confused and are called disaster personalities. In order to survive in a disaster, it is necessary to develop the power to overcome the disaster personality by experiencing the disaster situation in advance. Therefore, training to overcome disaster personality is needed, and virtual reality can be a good training means in that it can experience without physical space. In addition, periodic actual disaster evacuation drills should be carried out to compensate for the shortcomings of virtual reality. In order to introduce fire disaster drill using virtual reality and to spread it to the public, the Korea National VR project should be introduced which benchmarked national PC project which succeeded in the past informatization project. Besides, the Korea National Safety Point system should be integrated to cover disaster preparedness training and building reinforcement. If the national VR project and the national safety point system are introduced successfully, Korea will be the basis for escaping the disgraceful nickname of 'disaster republic'.

A Study on Reduction Method of Stack Effect at Stairwell of High-Rise Building (고층건물 피난계단에서의 연돌효과 저감방안 연구)

  • Kim, Jung-Yup;Shin, Hyun-Joon
    • Fire Science and Engineering
    • /
    • v.25 no.5
    • /
    • pp.14-20
    • /
    • 2011
  • As the height of the building increases, the stack effect in stairwell that is main facilities for evacuation becomes stronger. While the pressure rise in stairwell causes difficulties on opening the door for evacuation and has effect on smoke control system, reduction of stack effect will be necessary for providing more safe evacuation environment. The field experiments on pressure field in high-rise building are carried out to present reduction method of stack effect and the numerical analyses using network model are proceeded to design quantitatively the reduction method. As the air flow supplied from outside in lower stair and exhausted to outside in upper stair is formed in stairwell, the stack effect in stairwell is expected to be decreased.

A Study on Evacuees Risk Assesment for Application of Spatial Risk Information (공간위험정보를 적용한 대피자 위험성평가에 관한 연구)

  • Hong, Seungbum;Jang, Jae-Soon;Park, Hyun-A;Rie, Dong-Ho
    • Fire Science and Engineering
    • /
    • v.29 no.2
    • /
    • pp.8-12
    • /
    • 2015
  • Performance Based Design is evaluating after each calculatiuon ASET and RSET. Risk informaion values such as heat, smoke, toxic gas etc are extracted by FDS in this study. These Risk informaion values by FDS apply Artisoc (evacuation simulator). Building structure made $60m{\times}65m$, exit number is made 2 positions and people in this building are 50 ramdonly. 20 times (case1~case 20) simulated and analysis evacuees risk by evacuated route positions.

Fire Risk by Type of Building Exterior Material through Fire Cases (화재사례를 통한 건축물 외장재 종류별 화재발생위험성)

  • Lee, Jeong-Il;Kweon, Young-Hee
    • Journal of the Korea Safety Management & Science
    • /
    • v.24 no.2
    • /
    • pp.155-161
    • /
    • 2022
  • Recently, the number of cases of fire spreading due to exterior materials of buildings is increasing. Due to the nature of modern architecture, which emphasizes the aesthetics of buildings, because buildings pursue a splendid appearance, they are inexpensive and have relatively good insulation performance, but an increasing number of buildings are adopting insulation materials that have poor fire safety performance. The risk of spread is also greatly increased. Since the exterior wall of a building is made of a variety of materials and structures, it is composed of a combination of several elements, including materials such as insulation and finishing materials. Therefore, it was determined that it was necessary to introduce a more systematic evaluation method for building exterior materials, and to improve the system reflecting this, away from the existing evaluation method that only checked the fire safety performance of finishing materials.

A Study on the Convergence Safety Management Improvement of Hazardous Material Facilities (위험물시설의 융합형 안전관리 개선방안에 관한 연구)

  • Ku, Jae-Hyun
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.7
    • /
    • pp.47-53
    • /
    • 2018
  • The actual condition of safety management and problems for hazardous material facilities in national industrial complex are investigated and analyzed in fields of hazardous material facilities safety, fire fighting equipment safety, building safety, space safety. In most cases, the failure to comply with legal requirements and the maintenance of fire safety have been pointed out. As a result, the total number of problems identified was 466 and problems in the field of hazardous material facilities safety have been pointed out the most. Also, it was analyzed that the number of problems identified in the manufacturing facilities and general handling centers among the hazardous materials facilities was the highest. Therefore, it will contribute to strengthening the safety management capability of the national industrial complex in the future by suggesting the convergence direction of the safety diagnosis system and the systematic introduction of the precise safety diagnosis.

Countermeasure and Spalling Property of High Performance Concrete (고성능 콘크리트의 폭렬특성 및 대책)

  • Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.1105-1108
    • /
    • 2008
  • This paper investigated measures of spalling prevention and mechanism to secure stability of subjected to a fire circumstance. The results were summarized as following. 1) There were 4 kinds of methods for spalling prevention, such as declining percentage of water content and cement water ratio, isolating from high temperature with fire proof covering, giving lateral resistance stress, and discharging vapor pressure using fibers. 2) It was confirmed that methods using fibers to a new construction and fire proof covering to a existing construction on the basis of investigation for the spalling mechanism through the existing theory of spalling and a new theory of WPB.

  • PDF

A Study on Escape Safety Assessment of High-Rise Office Buildings for Security Plans (경호경비계획을 위한 사무용 고층건축물의 피난안전성평가에 관한 연구)

  • Park, Nam-Kwun;Lee, Young-Ju;Yoon, Myong-O
    • Korean Security Journal
    • /
    • no.28
    • /
    • pp.57-77
    • /
    • 2011
  • Recently, property and life loss is increasing internally and externally, due to fire spread in high-rise buildings which results from a variety of disasters like fire and terror. In this study, therefore, an evacuation simulation was performed to predict escape behaviors of occupants and assess escape safety in high-rise office buildings after setting up each scenario, as part of safety measures for high-rise buildings. Based on the results and data obtained, escape safety was assessed, finally. The results and suggestions of this study are as follows. Firstly, most of the present researches on high-rise building and multiple-use facilities are weighted towards qualitative perspectives. It is, therefore, considered that we have to establish concrete, practical, systematical and rational safety measures to minimize damages in dangerous situations, by analyzing security plans for high-rise buildings in depth and preparing for those situations from various angles. Secondly, setting up evacuation sections in security plans for high-rise buildings is an important factor which influences refuge. Thirdly, in relation to security plans for high-rise buildings, it is possible to reduce the entire time for escape, by setting up escape exits of each floor in consideration of a simultaneous evacuation situation.

  • PDF

Analysis of Prediction Results and Grid Size Dependence According to Changes in Fire Area (화원면적 변화에 따른 격자 크기 의존도 및 예측결과 분석)

  • Yun, Hong-Seok;Hwang, Cheol-Hong
    • Fire Science and Engineering
    • /
    • v.33 no.6
    • /
    • pp.9-19
    • /
    • 2019
  • In fire simulations for building fire safety evaluation, changes in the fire area and grid size can significantly influence the prediction results. Therefore, the effects of area changes of the fire source with identical maximum heat release rates on the prediction results of a compartment fire were investigated. The dependence of the prediction results on the grid size using the identical fire area was also examined. No significant changes were observed in the thermal and chemical characteristics of the fires with variable grid sizes, even though the fire area was changed when six or more grids were set based on the fire diameter. In addition, changes in the fire area caused significant differences in the prediction of major physical quantities associated with available safety egress time (ASET) within a compartment. However, the fire area changes did not considerably influence the overall fire characteristics outside the compartment after reaching a certain distance from the opening.

A Study on the Evacuation Performance Review for the Office Buildings (업무용 빌딩의 피난 성능 검토에 관한 연구)

  • 오혁진;백승태;김우석;이수경
    • Fire Science and Engineering
    • /
    • v.17 no.3
    • /
    • pp.1-6
    • /
    • 2003
  • In this study, it reviewed about evacuation performance of a specified Office Building. assessment tools is FAST 3.1.7 (Estimation of Flash Over, Estimation of Layer Height Down Flow Time), SIMULEX 32-bit (Estimation of Evacuation Time), JASMINE 3.25d. (Smoke Flow Assessment of a specified time) Result from Fire Scenario # 1, Flash Over is not generated in Compartment. Evacuation Time is estimated 25.2 sec by SIMULEX 32-bit. layer height until this time (25.2 sec) was estimated 2.4 m by FAST 3.1.7. After ignition until this time (25.2 sec), smoke was not release to the a corridor. In consequence, We concluded that people in building are completing the safe evacuation without the damage of smoke. Result from Fire Scenario # 1, Flash Over generated 6 min 33.2 sec in Compartment. Evacuation Time is estimated 1 min 25.5 sec by SIMULEX 32-bit. layer height down flow time is 1 min 40.8 sec by FAST 3.1.7 and 5 min 23 sec by theoretical calculation. Also, total building evacuation time was estimated 2 min 26.6 sec. After ignition until this time (2 min 26.6 sec), smoke released to the a corridor but it amount was few little. Therefore, generated smoke in compartment not effected to the people in buildings.

Study on the Ship Fire Analysis According to Explosion Hazard (폭발의 위험성에 의한 선박화재의 사고사례 분석)

  • You, Jisun;Chung, Yeong-Jin
    • Fire Science and Engineering
    • /
    • v.29 no.1
    • /
    • pp.80-86
    • /
    • 2015
  • This study analyzed recent cases of ship fires explosions and investigated their problems and coping plans. Through analysis on the statistical figures, it was found that our nation's situations of maritime accidents by kind during the period of 2009~2013 showed the ratios of ship accidents caused by fires explosions was the highest in 2012 with 7.58% (55 cases) followed by year 2009 with 3.39% (34 cases), year 2010 with 3.39% (25 cases), year 2011 with 6.03% (57 cases) and year 2013 with 6.74% (43 cases), which indicates a steady increase in the number of ship accidents. Majority of reasons for ship fires explosions were lack of safety awareness. Since those accidents happen on the sea, fires, once they happen, tend to get serious due to absence of on board & nearby fire extinguishing facilities, public fire service's uneasy access to them and great influences of natural factors such as wind and etc. Ship fires explosions are special cases unlike what happens to general edifices. So, their coping plans should focus on preventive measures since the damages those cases bring about can be detrimental. For this reason, it's necessary to research precise evacuation plans, develop ship structure & materials reinforcing fire resistance to secure more time for evacuation and enhance people's safety awareness by implementing thorough safety training.