• Title/Summary/Keyword: 건식 공정

Search Result 497, Processing Time 0.028 seconds

Synthesis of Manganese Hydrogen Phosphate Hydrate by Controlled Double-jet Precipitation (더블제트 침전법에 의한 제이인산망간염 수화물의 새로운 합성 방법)

  • Kim, Won-Seok;Kang, Yong;Kim, Yeong-Cheol
    • Applied Chemistry for Engineering
    • /
    • v.19 no.1
    • /
    • pp.66-72
    • /
    • 2008
  • Manganese hydrogen phosphate hydrate, $MnHPO_4{\cdot}2.25H_2O$, is a major constituent of the pre-conditioning compositions for the manganese phosphate coating treatment over carbon steel substrate. This compound is conventionally produced by the synthesis in the aqueous solution process followed by the filtration and drying processes and a series of size reduction and classification processes in dry state. However, it is evident that the conventional process is neither environment-friendly nor cost-effective. In this work, a new process principle was examined based on the controlled double-jet precipitation technology to produce the manganese chemical product of fairly uniform particle size distribution in an aqueous solution media. The effects of stabilizing agents were comparatively studied by the scanning electron microscope analysis in a uniformity point of view of the resulting particle size. Polyvinylpyrrolidone and Gum Arabic were excellent in controlling the crystal growth step, resulting in fairly uniform size distributions of the particles from the controlled double-jet process.

결정질 실리콘 태양전지 표면 조직화 형상이 효율에 미치는 영향 분석

  • Byeon, Seong-Gyun;Kim, Jun-Hui;Park, Ju-Eok;Jo, Hae-Seong;Kim, Min-Yeong;Im, Dong-Geon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.315.1-315.1
    • /
    • 2013
  • 표면 조직화의 목적은 태양전지 표면에서의 입사되는 빛의 반사율을 감소 시키고, 웨이퍼 내에서 빛의 통과 길이를 길게 하며, 흡수되는 빛의 양을 증가시키는 것이다. 본 연구에는 습식, 건식 표면조직화 방법에 따른 표면 형상과 표면 반사도를 분석 하였으며, 셀을 제작하여 전기적 특성과 광학적 특성의 상관관계를 분석하였다. 표면 조직화 공정은 염기성 용액인 KOH를 이용한 식각 방법과 Ag를 이용한 metal-assisted 식각, 산증기를 이용한 식각, 플라즈마를 이용한 반응성 이온식각을 적용하여 제작하였다. 표면 반사율을 400~1000 nm 사이의 파장에서 측정하였으며 KOH를 이용하여 식각한 샘플이 9.11%의 표면 반사율을 가졌으며 KOH를 이용하여 식각한 표면에 추가로 metal-assisted 식각을 한 샘플이 2%로 가장 낮은 표면 반사율을 보였다. 표면 조직화 후 동일 조건으로 셀을 제작 하여 효율 측정 결과 Ag를 이용한 2단계 metal-assisted chemical 식각이 15.83%의 가장 낮은 광변환 효율을 보였으며 RIE를 이용한 2단계 반응성 이온 식각공정이 17.78%로 가장 높은 광변환 효율을 보였다. 이 결과는 반사도 결과와 일치 하지 않았다. 표면 조직화 모양에 따른 셀 효율의 변화는 도핑 프로파일과 표면 재결합 속도의 변화 때문이라 생각되며 더 명확한 분석을 위해 양자 효율을 측정하여 분석을 시도하였다. 측정 결과 단파장 대역에서 낮은 응답특성을 가지는 것을 확인 할 수 있었는데 그 이유는 낮은 반사도를 가지는 표면조직화 공정의 경우 나노사이즈의 구조를 갖기 때문에 균일한 도핑 프로파일을 얻지 못해 전자 정공의 분리가 제대로 이루어지지 못하였고 표면 재결합 속도증가의 원인으로 단락전류와 개방전압이 낮아져 효율이 떨어진 것으로 판단된다. 실험 결과 도핑 프로파일의 균일성은 셀 효율 개선을 위해 낮은 표면 반사율 만큼 중요하다는 점을 알게되었다. 낮은 반사율을 갖는 표면조직화 공정도 중요하지만 표면에 따른 균일한 도핑 프로파일을 갖는 공정을 개발한다면 단파장 응답도가 향상되어 단락전류밀도의 상승효과를 얻을 수 있을 것이라 판단된다.

  • PDF

A Study on the Electrolytic Process for Palladium Separation from Recovered Crude Metal of Electronic Waste (전자폐기물에서 회수된 조금속으로부터 팔라듐 분리를 위한 전해공정에 관한 연구)

  • Park, Sung Cheol;Han, Chul Woong;Kim, Yong Hwan;Jung, Yeon Jae;Lee, Man Seung;Son, Seong Ho
    • Resources Recycling
    • /
    • v.30 no.6
    • /
    • pp.76-82
    • /
    • 2021
  • The separation of palladium from crude metal, which is obtained from electronic waste using pyrometallurgy was achieved through electrolysis. This was done to recover high-purity copper. The oxidation potentials of these metals are a fundamental part of the analysis of electrolytic separation of palladium and impurity metals. To achieve this, copper, iron, and nickel were dissolved in the electrolyte, and palladium and aluminum were found to be recoverable from anode slime. During the electrolysis for palladium separation, palladium was present in the anode slime and was obtained with a recovery of 97.46 % indicating almost no loss. 4N-grade copper was recovered from the electrodeposition layer at the cathode.

Optimization of Ar Reshape Process for 4H-SiC Trench MOSFET (4H-SiC Trench MOSFET 응용을 위한 Ar Reshape 공정 최적화)

  • Sung, Min-Je;Kang, Min-Jae;Kim, Hong-Ki;Kim, Seong-jun;Lee, Jung-Yoon;Lee, Wonbeom;Lee, Nam-suk;Shin, Hoon-Kyu
    • Journal of IKEEE
    • /
    • v.22 no.4
    • /
    • pp.1234-1237
    • /
    • 2018
  • For 4H-SiC trench MOSFET which can reduce on-resistance and switching losses compared to 4H-SiC planar MOSFET, the optimization study for decrease of sub-trench was carried out. In order to decrease sub-trench, Ar reshape process was used and trench shapes were observed as a function of temperature and process time. As a result, it was confirmed that the process conditions for $1500^{\circ}C$ and 20 min were most effective for the suitable trench profiles. In addition, dry/wet oxidation was performed at the Ar reshaped-samples to observe the oxidation thickness with different crystal orientations.

Analysis on Distribution Characteristics of Spent Fuel in Electrolytic Reduction Process (전해환원 공정에서의 사용후핵연료 분배 특성 분석)

  • Park, Byung Heung;Lee, Chul Soo
    • Korean Chemical Engineering Research
    • /
    • v.50 no.4
    • /
    • pp.696-701
    • /
    • 2012
  • Non-aqueous processes have been developed for stable management and reuse of spent fuels. Nowadays, a plan for the management of spent fuel is being sought focusing on a non-aqueous process in Korea. Named as pyroprocessing, it includes an electrolytic reduction process using molten salt at high temperature for the spent fuels, which provides metallic product for a following electro-refining process. The electrolytic reduction process utilizes electrochemical reaction producing Li to convert oxides into metals in high temperature LiCl medium. Various kinds of elements in the spent fuels would be distributed in the system according to their respective reactivity with the reductant, Li, and the medium, LiCl. This study elucidates the reactions of the elements to understand the behavior of composite elements on the spent fuels by thermodynamic calculations. Uranium and transuranic are reduced into their metallic forms while rare-earth oxides, except for Eu, are stable against the reaction at a process temperature. This study also covers the tendency of reactions with respect to the temperature and, finally, estimates radioactivity and heat load on the distributed phases based on the reference spent fuel characteristics.

Study on Oxidation or Reduction Behavior of Cs-Te-O System with Gas Conditions of Voloxidation Process (휘발산화 공정 조건에 따른 Cs-Te-O 시스템의 산화 환원 거동 연구)

  • Park, Byung Heung
    • Korean Chemical Engineering Research
    • /
    • v.51 no.6
    • /
    • pp.700-708
    • /
    • 2013
  • Pyroprocessing has been developed for the purpose of resolving the current spent nuclear fuel management issue and enhancing the recycle of valuable resources. Pyroprocessing has been developed with the dry technologies which are performed under high temperature conditions excluding any aqueous processes. Pyro-processes which are based on the electrochemical principles require pretreatment processes and a voloxidation process is considered as a pretreatment step for an electrolytic reduction process. Various kinds of gas conditions are applicable to the voloxidation process and the understanding of Cs behavior during the process is of importance for the analyses of waste characteristics and heat load on the overall pyroprocessing. In this study, the changes of chemical compounds with the gas conditions were calculated by analyzing gas-solid reaction behavior based on the chemical equilibria on a Cs-Te-O system. $Cs_2TeO_3$ and $Cs_2TeO_4$ were selected after a Tpp diagram analysis and it was confirmed that they are relatively stable under oxidizing atmospheres while it was shown that Cs and Te would be removed by volatilization under reducing atmosphere at a high temperature. This work provided basic data for predicting Cs behavior during the voloxidation process at which compounds are chemically distributed as the first stage in the pyroprocessing and it is expected that the results would be used for setting up material balances and related purposes.

A Semiconductor Etching Process Monitoring System Development using OES Sensor (OES 센서를 이용한 반도체 식각 공정 모니터링 시스템 개발)

  • Kim, Sang-Chul
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.3
    • /
    • pp.107-118
    • /
    • 2013
  • In this paper, we developed the semiconductor monitoring system for the etching process. Around the world, expert companies are competing fiercely since the semiconductor industry is a leading value-added industry that produces the essential components of electronic products. As a result, many researches have been conducted in order to improve the quality, productivity, and characteristics of semiconductor products. Process monitoring techniques has an important role to give an equivalent quality and productivity to produce semiconductor. In fact, since the etching process to form a semiconductor circuit causes great damage to the semiconductors, it is very necessary to develop a system for monitoring the process. The proposed monitoring system is mainly focused on the dry etching process using plasma and it provides the detailed observation, analysis and feedback to managers. It has the functionality of setting scenarios to match the process control automatically. In addition, it maximizes the efficiency of process automation. The result can be immediately reflected to the system since it performs real-time monitoring. UI (User Interface) provides managers with diagnosis of the current state in the process. The monitoring system has diverse functionalities to control the process according to the scenario written in advance, to stop the process efficiently and finally to increase production efficiency.

Effects of Rice Flours Prepared with Different Milling Methods on Quality of Sulgidduk (제조 방법을 달리한 쌀가루가 설기떡의 품질에 미치는 영향)

  • Park, Jae-Hee
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.43 no.11
    • /
    • pp.1742-1748
    • /
    • 2014
  • This study investigated the quality characteristics of commercial rice flour (CRF) and rice flours prepared by different milling methods for sulgidduk. For particle distribution, dried rice flour after the 1st roll mill using a pin mill showed a particle size of greater than $710{\mu}m$, whereas a particle size less than $250{\mu}m$ accounted for 48% of whole rice flour. This proportion was higher than CRF after the 2nd step roll mill. Crude protein, lipid, and ash contents were significantly highest in 1st roll mill samples. For color, roll & pin made up of many small particles showed a high L value. CRF and roll & pin showed significantly higher starch damage and water-holding capacity, whereas pasting temperature, peak viscosity, and setback of RVA pasting characteristics were lower than 1st roll mill. When rice cakes were made from three kinds of rice flour, roll & pin was not significantly different compared to the CRF. However, rice cakes made with 1st roll milled rice flour showed rough crumb and crust. Rice cake made with roll & pin or CRF showed similar characteristics for texture. In the quantitative descriptive analysis, rice cake made with roll & pin showed better appearance, flavor, taste, texture, and overall acceptability than CRF and 1st roll mill. Therefore, rice flour prepared by roll & pin could be applied to sulgidduk with high quality.

Decontamination of Mercury Contained in CCFLs (Cold Cathode Fluorescence Light) Disassembled from Waste LCDs (Liquid Crystal Display) (폐 LCD (Liquid Crystal Display) 해체 후 분리된 CCFL (Cold Cathode Fluorescence Light) 내 수은의 건식 제거 공정)

  • Park, Jae Layng;Lee, Sungkyu;Kang, Leeseung;Lee, Chan Gi;Cho, Sung-Su;Hong, Myung Hwan;Hong, Hyun Seon
    • Resources Recycling
    • /
    • v.23 no.2
    • /
    • pp.61-70
    • /
    • 2014
  • LCD televisions and monitors use cold cathode fluorescence lamps (CCFLs) to illuminate the screen. Most CCFLs contain mercury and they have to be carefully handled at the end of their lives as per minimum treatment standards under the Waste Electrical and Electronic Equipment (WEEE) and Restriction of Hazardous Substances (RoHS) directives. CCFLs were carefully separated from mold frames of waste LCD units for primary decontamination of mercury/fluorescent compound mixture using CCFL decontamination system designed and fabricated in the present research. Residual mercury was further removed by employing a pyro-process, where crushed CCFL tubes transferred from primary decontamination process were subject to heat treatment at $550^{\circ}C$ in a box furnace: more than 99% of mercury was removable from waste CCFLs.

Effects of the Preparation Process on the Synthesis and the Luminescence of Ba2SiO4:Eu2+ Phosphor Powders (합성공정이 Ba2SiO4:Eu2+ 형광체 분말의 합성과 발광특성에 미치는 영향)

  • Park, Jung Hye;Kim, Young Jin
    • Journal of the Korean Electrochemical Society
    • /
    • v.16 no.3
    • /
    • pp.184-189
    • /
    • 2013
  • $Ba_2SiO_4:Eu^{2+}$ ($B_2S:Eu^{2+}$) powders were prepared by firing the dry gel obtained by the sol-gel and the hybrid process (sol-gel and combustion), respectively, and their structure and luminescence were investigated. Tetraethyl orthosilicate (TEOS) was used as a Si source. The phase transition was observed with the TEOS content. With 1.2M TEOS, the powders prepared by the sol-gel process without prior calcination were composed of the $B_2S:Eu^{2+}$ single phase, whereas those by the sol-gel and the hybrid process with prior calcination consisted of the dominant $B_2S:Eu^{2+}$ and minor $BaSiO_3:Eu^{2+}$ ($BS:Eu^{2+}$) phases and their emission intensities were approximately two times higher than those without prior calcination. The hybrid process could reduce the process time innovatively compared to the sol-gel process, even though the former was a little inferior to the latter in the emission intensity of $B_2S:Eu^{2+}$. With 1.1M TEOS, the $B_2S:Eu^{2+}$ single phase was obtained by the hybrid process, and its green emission was observed at 505 nm originated from the $4f^65d^1{\rightarrow}4f^7$ transition of $Eu^{2+}$ ions.