• Title/Summary/Keyword: 건식개질

Search Result 26, Processing Time 0.031 seconds

플라즈마를 활용한 $CO_2$ dry reforming

  • Song, Yeong-Hun;Lee, Dae-Hun;Jo, Seong-Gwon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.71.1-71.1
    • /
    • 2013
  • 메탄가스와 이산화탄소는 지구온난화 가스이기 때문에 배출규제가 점차 강화될 것으로 전망되고 있다. 또한 이들 가스는 매립지 또는 바이오 공정을 통해 발생되는 가스이기 때문에 단순히 배출을 억제하는 데 그치지 않고 보다 적극적으로 활용해야할 필요성이 있다. 현재 메탄과 이산화탄소를 동시에 활용하는 기술로는 촉매공정을 통해 메탄과 이산화탄소를 수소와 일산화탄소로 전환하는 방법이 대표적이나, 본 공정은 $800{\sim}900^{\circ}C$의 고온조건을 필요로 하고 고압조건에서 다량으로 생성되는 탄소에 의한 촉매 활성도의 저하문제로 인해 해당 기술의 실제 보급에 어려움이 있는 것으로 알려져 있다. 한편, 플라즈마를 활용한 메탄가스 개질(reforming) 기술은 고온 플라즈마인 경우 60~70년 전부터 상용화 사례가 있으며, 저온 플라즈마의 경우는 약 10여 년 전부터 개질반응의 공정온도를 낮추려는 연구를 중심으로 기초연구가 수행되어왔다. 이들 플라즈마를 활용한 메탄개질 기술은 메탄의 직접분해, 부분산화, 수증기 개질 및 건식개질 등으로 분류되는 데, 최근 지구온난화가스인 이산화탄소의 처리에 대한 관심이 높아지면서 이산화탄소를 활용하는 건식개질 기술에 대한 관심이 높아지고 있는 상황이다. 현재 플라즈마 건식개질기술에서 주된 이슈는 높은 전력비용이고, 이를 낮추기 위해 촉매를 활용하거나 플라즈마 발생을 최적화하려는 연구가 진행되고 있다. 본 발표에서는 플라즈마를 활용한 건식개질 기술의 장단점, 실용화 가능성 및 향후의 과제를 다루고 있으며, 이를 위해 기계연구원에서의 연구결과 및 국내외 연구실의 결과를 살펴보았다.

  • PDF

Evaluation of Stripping and Rutting Properties of CRM Modified Asphalt Mixtures (CRM 개질아스팔트 혼합물의 소성변형 및 박리저항 특성)

  • Doh, Young-S.;Park, Tae-W.;Kim, Hyun-H.;Kim, Kwang-W.
    • International Journal of Highway Engineering
    • /
    • v.9 no.4
    • /
    • pp.149-158
    • /
    • 2007
  • Evaluation of the asphalt mixture modified with crumb rubber modifier(CRM) was performed to estimate possibility of using it as a paying material. OACs(optimum asphalt content) of CRM modified asphalt mixtures by dry process and wet process were determined by Marshall mix design and Wheel tracking test and moisture susceptibility test by freezing and thawing were carried out with CRM modified asphalt mixtures at OACs. The results from these tests, resistance of permanent deformation of CRM modified asphalt mixtures were superior to one of AP-5 while showing very low resistance of moisture sensitivity by freezing and thawing. This means that CRM modified asphalt mixtures are very sensitive to freezing and thawing. However, CRM modified asphalt mixture with anti-stripping material showed high improvement to resistance of moisture susceptibility by freezing and thawing. Therefore, it is recommended that when CRM mixtures were used in domestic, CRM modified asphalt mixtures should be with prevention against freezing and thawing resistance by moisture susceptibility.

  • PDF

Study on dry reforming and partial oxidation of methane. (대기압 플라즈마를 이용한 메탄의 건식개질과 부분산화반응의 비교)

  • Hwang, Na-Kyung;Cha, Min-Suk;Lee, Dae-Hoon;Song, Young-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2892-2897
    • /
    • 2008
  • Plasma techniques have been proposed to generate a hydrogen enrich gas to investigate a feasibility of plasma techniques on a fuel reforming, we considered a dry reforming and a partial oxidation with methane in the atmospheric pressure. For these experiments, we employed an arc jet plasma reactor. The effects of input power and oxidizer in each process were investigated by product analysis, including carbon monoxide, hydrogen, ethylene, propane, and acetylene as well as methane and carbon dioxide. In both processes, input electrical power activated the reactions significantly. The increased ratio of the carbon dioxide to methane in the dry reforming doesn't affect to a methane conversion, whereas increased ratio of oxidizer to methane in the partial oxidation was very effective for the reaction. Moreover, for a simultaneous treatment of methane and carbon dioxide, a feasibility of a dry reforming combined with partial oxidation also has been investigated.

  • PDF

Dry Reforming of Methane over Promoters Added Ni/HY Catalysts (조촉매가 담지된 Ni/HY 촉매상에서 메탄의 건식 개질 반응 연구)

  • Jeong, Heondo
    • Clean Technology
    • /
    • v.23 no.2
    • /
    • pp.213-220
    • /
    • 2017
  • Dry reforming of methane to synthesis gas was investigated over a series of Ni/HY catalysts promoted by Mg, Ca, K and Mn. These catalysts were characterized by XRD, BET, SEM, and TGA analyses before and after the reaction. Conversions and product yields were increased with increasing nickel loading up to 13 wt%. Among the catalysts tested in this work, the Ni-Mg/HY catalyst showed the highest carbon resistance and the most stable catalytic performance. It was revealed that the addition of Mg promoter reduced the nickel particle size and produced the highly dispersed nickel particles, and consequently, retarded the catalyst deactivation.

Dry reforming of Propane to Syngas over Ni-CeO2/γ-Al2O3 Catalysts in a Packed-bed Plasma Reactor (충전층 플라즈마 반응기에서 Ni-CeO2/γ-Al2O3 촉매를 이용한 프로페인-합성 가스 건식 개질)

  • Sultana, Lamia;Rahman, Md. Shahinur;Sudhakaran, M.S.P.;Hossain, Md. Mokter;Mok, Young Sun
    • Clean Technology
    • /
    • v.25 no.1
    • /
    • pp.81-90
    • /
    • 2019
  • A dielectric barrier discharge (DBD) plasma reactor packed with $Ni-CeO_2/{\gamma}-Al_2O_3$ catalyst was used for the dry ($CO_2$) reforming of propane (DRP) to improve the production of syngas (a mixture of $H_2$ and CO) and the catalyst stability. The plasma-catalytic DRP was carried out with either thermally or plasma-reduced $Ni-CeO_2/{\gamma}-Al_2O_3$ catalyst at a $C_3H_8/CO_2$ ratio of 1/3 and a total feed gas flow rate of $300mL\;min^{-1}$. The catalytic activities associated with the DRP were evaluated in the range of $500{\sim}600^{\circ}C$. Following the calcination in ambient air, the ${\gamma}-Al_2O_3$ impregnated with the precursor solution ($Ni(NO_3)_2$ and $Ce(NO_3)_2$) was subjected to reduction in an $H_2/Ar$ atmosphere to prepare $Ni-CeO_2/{\gamma}-Al_2O_3$ catalyst. The characteristics of the catalysts were examined using X-ray diffraction (XRD), transmission electron microscopy (TEM), field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectrometry (EDS), temperature programmed reduction ($H_2-TPR$), temperature programmed desorption ($H_2-TPD$, $CO_2-TPD$), temperature programmed oxidation (TPO), and Raman spectroscopy. The investigation revealed that the plasma-reduced $Ni-CeO_2/{\gamma}-Al_2O_3$ catalyst exhibited superior catalytic activity for the production of syngas, compared to the thermally reduced catalyst. Besides, the plasma-reduced $Ni-CeO_2/{\gamma}-Al_2O_3$ catalyst was found to show long-term catalytic stability with respect to coke resistance that is main concern regarding the DRP process.

저온 플라즈마 및 방전에 의한 섬유의 표면개질과 염색가공에의 반응

  • 협전 등미가
    • Textile Coloration and Finishing
    • /
    • v.7 no.4
    • /
    • pp.105-112
    • /
    • 1995
  • 방전에 의한 섬유의 표면개질 기술로서, 저온 플라즈마, Sputter Etching 처리에 대해 서술하고 표면개질 효과를 표면장력, ESCA, SEM을 근거로해서 고찰하였다. 더우기 접착성, 염색물의 색채에 미치는 효과에 대해 검토하였다. 섬유의 염색가공에 있어 젖음, 발수, 발유, 접착, 대전방지, 광택, 촉감 등의 표면에 관련하는 기능적 혹은 감각적 특성이 중요한 역할을 하고 있다. 섬유재료의 내부(bulk)의 특성을 살리면서 표면특성의 개질에 의해 한층 기능성을 향상시키는 것은 큰 의미를 가지며, 그와 관련한 표면개질 기술의 연구에 관심을 갖게 되었다. 종래에는 오로지 습식법에 의한 화학약품 처리나 그라프트 공중합 등이 많이 이용되어져 왔으나 습식가공법은 공업적으로는, 다량의 물, 유기용제, 색재, 수지, 계면활성제 등을 사용하기 때문에 피처리물의 건조에 필요한 에너지, 배수처리, 유기용제의 회수 등의 문제가 지적되고 있다. 이들 습식계의 문제점을 극복하는 기술로서 최근은 방전처리나 자외선 처리 등의 건식처리가 많이 연구되어 오고 있다.

  • PDF

Comparison of Dry Reforming of Butane in Catalyst Process and Catalyst+Plasma Process over Ni/γ-Al2O3 Catalyst (뷰테인 건식 개질 반응을 위한 Ni/γ-Al2O3 촉매를 이용한 촉매 공정과 촉매+플라즈마 공정 비교)

  • Jo, Jin-Oh;Jwa, Eunjin;Mok, Young-Sun
    • Journal of the Korean Institute of Gas
    • /
    • v.22 no.1
    • /
    • pp.26-36
    • /
    • 2018
  • Conventional nickel-based catalyst processes used for dry reforming reactions have high activation temperatures and problems such as carbon deposition and metal sintering on the active sites of the catalyst surface. In this study, the characteristics of butane dry reforming reaction were investigated by using DBD plasma combined with catalytic process and compared with existing catalyst alone process. The physical and chemical properties of the catalysts were investigated using a surface area & pore size analyzer, XRD, SEM and TEM. Using $10%Ni/{\gamma}-Al_2O_3$ at $580^{\circ}C$, in the case of the catalyst+plasma process, the conversion of carbon dioxide and butane were improved by about 30% than catalyst alone process. When the catalyst+plasma process, the conversion of carbon dioxide and butane and the hydrogen production concentration are enhanced by the influence of various active species generated by the plasma. In addition, it was found that the particle size of the catalyst is decreased by the plasma in the reaction process, and the degree of dispersion of the catalyst is increased to improve the efficiency.

Recent Progress for Hydrogen Production from Biogas and Its Effective Applications (바이오가스 유래 수소 제조 기술 동향 및 효과적인 적용)

  • Song, Hyoungwoon;Jung, Hee Suk;Uhm, Sunghyun
    • Applied Chemistry for Engineering
    • /
    • v.31 no.1
    • /
    • pp.1-6
    • /
    • 2020
  • Hydrogen production from biogas has received consistent attention due to the great potential to solve simultaneously the issues of energy demands and environmental problems. Practically, biomethane produced by purification/upgrading of biogas can be a good alternative to the natural gas which is a main reactant for a steam methane reforming process. Judging from the economic and environmental impacts, however, the steam biogas and dry reforming are considered to be more effective routes for hydrogen production because both processes do not require the carbon dioxide elimination step. Herein, we highlight recent studies of hydrogen production via reforming processes using biogas and effective applications for earlier commercialization.

Aging, Cracking and Deformation Characteristics of Selected Polymer-modified Asphalt Concretes (특정 개질아스팔트 혼합물의 노화, 균열 및 변형 특성)

  • Lee, Hak-I.;Kim, Hyun-H.;Park, Nam-Won;Kim, Kwang-W.
    • International Journal of Highway Engineering
    • /
    • v.10 no.2
    • /
    • pp.205-219
    • /
    • 2008
  • The polymers, low-density polyethylene (LDPE) and styrene-butadiene-styrene(SBS) -modified asphalt mixtures are advanced asphalt pavement materials in which $3{\sim}6%$ of them, and/or some other additive, by weight of total binder are added. The purpose of modifying asphalt material is to improve typical weakness such as rutting and cracking resistance of normal asphalt mixtures. These materials have been proved to show many advantages and practical applicability in the plant and field. Wet processed PMA binder and/or dry processed asphalt mixtures are developed as field products for many years. The objective of this paper is to show the characteristics of the LDPE and SBS-modified asphalt mixtures by comprehensive evaluation and comparison with those of normal asphalt mixtures.

  • PDF